Cargando…
Human activity recognition from sensor data using spatial attention-aided CNN with genetic algorithm
Capturing time and frequency relationships of time series signals offers an inherent barrier for automatic human activity recognition (HAR) from wearable sensor data. Extracting spatiotemporal context from the feature space of the sensor reading sequence is challenging for the current recurrent, con...
Autores principales: | Sarkar, Apu, Hossain, S. K. Sabbir, Sarkar, Ram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9596348/ https://www.ncbi.nlm.nih.gov/pubmed/36311167 http://dx.doi.org/10.1007/s00521-022-07911-0 |
Ejemplares similares
-
Deep CNN-LSTM With Self-Attention Model for Human Activity Recognition Using Wearable Sensor
Publicado: (2022) -
Multi-Sensor Data Fusion and CNN-LSTM Model for Human Activity Recognition System
por: Zhou, Haiyang, et al.
Publicado: (2023) -
A Lightweight Attention-Based CNN Model for Efficient Gait Recognition with Wearable IMU Sensors
por: Huang, Haohua, et al.
Publicado: (2021) -
TOPSIS aided ensemble of CNN models for screening COVID-19 in chest X-ray images
por: Pramanik, Rishav, et al.
Publicado: (2022) -
Contact Pattern Recognition of a Flexible Tactile Sensor Based on the CNN-LSTM Fusion Algorithm
por: Song, Yang, et al.
Publicado: (2022)