Cargando…

A new lightweight deep neural network for surface scratch detection

This paper aims to develop a lightweight convolutional neural network, WearNet, to realise automatic scratch detection for components in contact sliding such as those in metal forming. To this end, a large surface scratch dataset obtained from cylinder-on-flat sliding tests was used to train the Wea...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Wei, Zhang, Liangchi, Wu, Chuhan, Cui, Zhenxiang, Niu, Chao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer London 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9596349/
https://www.ncbi.nlm.nih.gov/pubmed/36313192
http://dx.doi.org/10.1007/s00170-022-10335-8
Descripción
Sumario:This paper aims to develop a lightweight convolutional neural network, WearNet, to realise automatic scratch detection for components in contact sliding such as those in metal forming. To this end, a large surface scratch dataset obtained from cylinder-on-flat sliding tests was used to train the WearNet with appropriate training parameters such as learning rate, gradient algorithm and mini-batch size. A comprehensive investigation on the network response and decision mechanism was also conducted to show the capability of the developed WearNet. It was found that compared with the existing networks, WearNet can realise an excellent classification accuracy of 94.16% with a much smaller model size and faster detection speed. Besides, WearNet outperformed other state-of-the-art networks when a public image database was used for network evaluation. The application of WearNet in an embedded system further demonstrated such advantages in the detection of surface scratches in sheet metal forming processes.