Cargando…

Subalpine woody vegetation in the Eastern Carpathians after release from agropastoral pressure

The subalpine vegetation in the Eastern Carpathians has been under agropastoral influence as a high-mountain open pasture for about five centuries. Today, the subalpine zone released by human intervention is growing as thickets. In this study, we use a numerical model of tree crowns (CHM, Canopy Hei...

Descripción completa

Detalles Bibliográficos
Autores principales: Mitka, Józef, Kucharzyk, Stanisław, Capelo, Jorge, Stachurska-Swakoń, Alina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9596460/
https://www.ncbi.nlm.nih.gov/pubmed/36284149
http://dx.doi.org/10.1038/s41598-022-22248-3
Descripción
Sumario:The subalpine vegetation in the Eastern Carpathians has been under agropastoral influence as a high-mountain open pasture for about five centuries. Today, the subalpine zone released by human intervention is growing as thickets. In this study, we use a numerical model of tree crowns (CHM, Canopy Height Model) based on laser scanning (LiDAR) and a high-resolution digital terrain model (DTM) to delineate the subalpine thicket distribution. Anselin ‘Local Moran's I’ statistic was used to find hot and cold spots in vegetation cover. We used a logistic generalized linear model (GLM) and Principal Component Analysis (PCA) to set for the historical, climatic and terrain conditions candidates as the predictors of the present-day distribution of vegetation hot spots. We use variance partitioning to assess the interaction of climate and terrain variables. The resulting model suggests key environmental controls that underlie the vegetation pattern. Namely, snow in terrain depressions protects woody vegetation against abrasion and winter drought and increased insolation reduces the site humidity in the summer on S-E exposure hampering re-vegetation. In addition, the increasing distance from the treeline declines the rate of secondary succession. In all, the spatial model predicts the 35% coverage by thickets as a theoretical maximum of available climatic-terrain niches. The results suggest that the growth of the subalpine thicket, in the face of growing global temperature, may be restricted due to the limited number of niches available.