Cargando…
Data-driven identification of heart failure disease states and progression pathways using electronic health records
Heart failure (HF) is a leading cause of morbidity, healthcare costs, and mortality. Guideline based segmentation of HF into distinct subtypes is coarse and unlikely to reflect the heterogeneity of etiologies and disease trajectories of patients. While analyses of electronic health records show prom...
Autores principales: | Nagamine, Tasha, Gillette, Brian, Kahoun, John, Burghaus, Rolf, Lippert, Jörg, Saxena, Mayur |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9596465/ https://www.ncbi.nlm.nih.gov/pubmed/36284167 http://dx.doi.org/10.1038/s41598-022-22398-4 |
Ejemplares similares
-
Multiscale classification of heart failure phenotypes by unsupervised clustering of unstructured electronic medical record data
por: Nagamine, Tasha, et al.
Publicado: (2020) -
CKD subpopulations defined by risk‐factors: A longitudinal analysis of electronic health records
por: Ramaswamy, Rajagopalan, et al.
Publicado: (2021) -
NT‐proBNP Qualifies as a Surrogate for Clinical End Points in Heart Failure
por: Schmitt, Walter, et al.
Publicado: (2021) -
Data‐driven personalization of a physiologically based pharmacokinetic model for caffeine: A systematic assessment
por: Fendt, Rebekka, et al.
Publicado: (2021) -
Electronic Health Record Skills Workshop for Medical Students
por: Zavodnick, Jillian, et al.
Publicado: (2019)