Cargando…
Modeling electronic health record data using an end-to-end knowledge-graph-informed topic model
The rapid growth of electronic health record (EHR) datasets opens up promising opportunities to understand human diseases in a systematic way. However, effective extraction of clinical knowledge from EHR data has been hindered by the sparse and noisy information. We present Graph ATtention-Embedded...
Autores principales: | Zou, Yuesong, Pesaranghader, Ahmad, Song, Ziyang, Verma, Aman, Buckeridge, David L., Li, Yue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9596500/ https://www.ncbi.nlm.nih.gov/pubmed/36284225 http://dx.doi.org/10.1038/s41598-022-22956-w |
Ejemplares similares
-
Implementation of a graph-embedded topic model for analysis of population-level electronic health records
por: Wang, Yuening, et al.
Publicado: (2022) -
Extraction of Information Related to Adverse Drug Events from Electronic Health Record Notes: Design of an End-to-End Model Based on Deep Learning
por: Li, Fei, et al.
Publicado: (2018) -
Extending electronic medical records vector models with knowledge graphs to improve hospitalization prediction
por: Gazzotti, Raphaël, et al.
Publicado: (2022) -
Retrosynthesis prediction using an end-to-end graph generative architecture for molecular graph editing
por: Zhong, Weihe, et al.
Publicado: (2023) -
End-Completely-Regular and End-Inverse Lexicographic Products of Graphs
por: Hou, Hailong, et al.
Publicado: (2014)