Cargando…
The Shape of Data: a Theory of the Representation of Information in the Cerebellar Cortex
This paper presents a model of rate coding in the cerebellar cortex. The pathway of input to output of the cerebellum forms an anatomically repeating, functionally modular network, whose basic wiring is preserved across vertebrate taxa. Each network is bisected centrally by a functionally defined ce...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9596575/ https://www.ncbi.nlm.nih.gov/pubmed/34902112 http://dx.doi.org/10.1007/s12311-021-01352-6 |
Sumario: | This paper presents a model of rate coding in the cerebellar cortex. The pathway of input to output of the cerebellum forms an anatomically repeating, functionally modular network, whose basic wiring is preserved across vertebrate taxa. Each network is bisected centrally by a functionally defined cell group, a microzone, which forms part of the cerebellar circuit. Input to a network may be from tens of thousands of concurrently active mossy fibres. The model claims to quantify the conversion of input rates into the code received by a microzone. Recoding on entry converts input rates into an internal code which is homogenised in the functional equivalent of an imaginary plane, occupied by the centrally positioned microzone. Homogenised means the code exists in any random sample of parallel fibre signals over a minimum number. The nature of the code and the regimented architecture of the cerebellar cortex mean that the threshold can be represented by space so that the threshold can be met by the physical dimensions of the Purkinje cell dendritic arbour and planar interneuron networks. As a result, the whole population of a microzone receives the same code. This is part of a mechanism which orchestrates functionally indivisible behaviour of the cerebellar circuit and is necessary for coordinated control of the output cells of the circuit. In this model, fine control of Purkinje cells is by input rates to the system and not by learning so that it is in conflict with the for-years-dominant supervised learning model. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12311-021-01352-6. |
---|