Cargando…
Efficient attention-based CNN network (EANet) for multi-class maize crop disease classification
Maize leaf disease significantly reduces the quality and overall crop yield. Therefore, it is crucial to monitor and diagnose illnesses during the growth season to take necessary actions. However, accurate identification is challenging to achieve as the existing automated methods are computationally...
Autores principales: | Albahli, Saleh, Masood, Momina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9597248/ https://www.ncbi.nlm.nih.gov/pubmed/36311068 http://dx.doi.org/10.3389/fpls.2022.1003152 |
Ejemplares similares
-
Artificial Intelligence-Based Drone System for Multiclass Plant Disease Detection Using an Improved Efficient Convolutional Neural Network
por: Albattah, Waleed, et al.
Publicado: (2022) -
EANet: Depth Estimation Based on EPI of Light Field
por: Du, Yunzhang, et al.
Publicado: (2021) -
AI-driven deep CNN approach for multi-label pathology classification using chest X-Rays
por: Albahli, Saleh, et al.
Publicado: (2021) -
DCNet: DenseNet-77-based CornerNet model for the tomato plant leaf disease detection and classification
por: Albahli, Saleh, et al.
Publicado: (2022) -
A CNN-RNN Framework for Crop Yield Prediction
por: Khaki, Saeed, et al.
Publicado: (2020)