Cargando…

A Simple, interpretable method to identify surprising topic shifts in scientific fields

This paper proposes a text-mining framework to systematically identify vanishing or newly formed topics in highly interdisciplinary and diverse fields like cognitive science. We apply topic modeling via non-negative matrix factorization to cognitive science publications before and after 2012; this a...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheng, Lu, Foster, Jacob G., Lee, Harlin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9597295/
https://www.ncbi.nlm.nih.gov/pubmed/36312829
http://dx.doi.org/10.3389/frma.2022.1001754
Descripción
Sumario:This paper proposes a text-mining framework to systematically identify vanishing or newly formed topics in highly interdisciplinary and diverse fields like cognitive science. We apply topic modeling via non-negative matrix factorization to cognitive science publications before and after 2012; this allows us to study how the field has changed since the revival of neural networks in the neighboring field of AI/ML. Our proposed method represents the two distinct sets of topics in an interpretable, common vector space, and uses an entropy-based measure to quantify topical shifts. Case studies on vanishing (e.g., connectionist/symbolic AI debate) and newly emerged (e.g., art and technology) topics are presented. Our framework can be applied to any field or any historical event considered to mark a major shift in thought. Such findings can help lead to more efficient and impactful scientific discoveries.