Cargando…
A Simple, interpretable method to identify surprising topic shifts in scientific fields
This paper proposes a text-mining framework to systematically identify vanishing or newly formed topics in highly interdisciplinary and diverse fields like cognitive science. We apply topic modeling via non-negative matrix factorization to cognitive science publications before and after 2012; this a...
Autores principales: | Cheng, Lu, Foster, Jacob G., Lee, Harlin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9597295/ https://www.ncbi.nlm.nih.gov/pubmed/36312829 http://dx.doi.org/10.3389/frma.2022.1001754 |
Ejemplares similares
-
Identifying mental health discussion topic in social media community: subreddit of bipolar disorder analysis
por: Timakum, Tatsawan, et al.
Publicado: (2023) -
Interpreting Bibliometric Data
por: Szomszor, Martin, et al.
Publicado: (2021) -
The Essence and Transcendence of Scientific Publishing
por: Medina-Franco, José L., et al.
Publicado: (2022) -
The Scientific Impact Derived From the Disciplinary Profiles
por: Allik, Jüri, et al.
Publicado: (2020) -
New Metrics for Cross-Country Comparison of Scientific Impact
por: Almeida, Renan Moritz V. R., et al.
Publicado: (2020)