Cargando…
Deep learning-based growth prediction for sub-solid pulmonary nodules on CT images
BACKGROUND: Estimating the growth of pulmonary sub-solid nodules (SSNs) is crucial to the successful management of them during follow-up periods. The purpose of this study is to (1) investigate the measurement sensitivity of diameter, volume, and mass of SSNs for identifying growth and (2) seek to e...
Autores principales: | Liao, Ri-qiang, Li, An-wei, Yan, Hong-hong, Lin, Jun-tao, Liu, Si-yang, Wang, Jing-wen, Fang, Jian-sheng, Liu, Hong-bo, Hou, Yong-he, Song, Chao, Yang, Hui-fang, Li, Bin, Jiang, Ben-yuan, Dong, Song, Nie, Qiang, Zhong, Wen-zhao, Wu, Yi-long, Yang, Xue-ning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9597322/ https://www.ncbi.nlm.nih.gov/pubmed/36313666 http://dx.doi.org/10.3389/fonc.2022.1002953 |
Ejemplares similares
-
Deep learning predicts malignancy and metastasis of solid pulmonary nodules from CT scans
por: Mu, Junhao, et al.
Publicado: (2023) -
Management of solid and sub-solid lung nodules
por: Herold, Christian J
Publicado: (2014) -
Plasma extracellular vesicle microRNAs for pulmonary ground-glass nodules
por: Zhang, Jia-Tao, et al.
Publicado: (2019) -
Preclinical characterization and phase I clinical trial of CT053PTSA targets MET, AXL, and VEGFR2 in patients with advanced solid tumors
por: Ma, Yu-Xiang, et al.
Publicado: (2022) -
A CT-based radiomics nomogram for prediction of lung adenocarcinomas and granulomatous lesions in patient with solitary sub-centimeter solid nodules
por: Chen, Xiangmeng, et al.
Publicado: (2020)