Cargando…

BSNN: Towards faster and better conversion of artificial neural networks to spiking neural networks with bistable neurons

The spiking neural network (SNN) computes and communicates information through discrete binary events. Recent work has achieved essential progress on an excellent performance by converting ANN to SNN. Due to the difference in information processing, the converted deep SNN usually suffers serious per...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yang, Zhao, Dongcheng, Zeng, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9597447/
https://www.ncbi.nlm.nih.gov/pubmed/36312025
http://dx.doi.org/10.3389/fnins.2022.991851
Descripción
Sumario:The spiking neural network (SNN) computes and communicates information through discrete binary events. Recent work has achieved essential progress on an excellent performance by converting ANN to SNN. Due to the difference in information processing, the converted deep SNN usually suffers serious performance loss and large time delay. In this paper, we analyze the reasons for the performance loss and propose a novel bistable spiking neural network (BSNN) that addresses the problem of the phase lead and phase lag. Also, we design synchronous neurons (SN) to help efficiently improve performance when ResNet structure-based ANNs are converted. BSNN significantly improves the performance of the converted SNN by enabling more accurate delivery of information to the next layer after one cycle. Experimental results show that the proposed method only needs 1/4–1/10 of the time steps compared to previous work to achieve nearly lossless conversion. We demonstrate better ANN-SNN conversion for VGG16, ResNet20, and ResNet34 on challenging datasets including CIFAR-10 (95.16% top-1), CIFAR-100 (78.12% top-1), and ImageNet (72.64% top-1).