Cargando…
Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases
BACKGROUND: Heart failure (HF) combined with hypertension is an extremely important cause of in-hospital mortality, especially for the intensive care unit (ICU) patients. However, under intense working pressure, the medical staff are easily overwhelmed by the large number of clinical signals generat...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9597462/ https://www.ncbi.nlm.nih.gov/pubmed/36312291 http://dx.doi.org/10.3389/fcvm.2022.994359 |
_version_ | 1784816096948256768 |
---|---|
author | Peng, Shengxian Huang, Jian Liu, Xiaozhu Deng, Jiewen Sun, Chenyu Tang, Juan Chen, Huaqiao Cao, Wenzhai Wang, Wei Duan, Xiangjie Luo, Xianglin Peng, Shuang |
author_facet | Peng, Shengxian Huang, Jian Liu, Xiaozhu Deng, Jiewen Sun, Chenyu Tang, Juan Chen, Huaqiao Cao, Wenzhai Wang, Wei Duan, Xiangjie Luo, Xianglin Peng, Shuang |
author_sort | Peng, Shengxian |
collection | PubMed |
description | BACKGROUND: Heart failure (HF) combined with hypertension is an extremely important cause of in-hospital mortality, especially for the intensive care unit (ICU) patients. However, under intense working pressure, the medical staff are easily overwhelmed by the large number of clinical signals generated in the ICU, which may lead to treatment delay, sub-optimal care, or even wrong clinical decisions. Individual risk stratification is an essential strategy for managing ICU patients with HF combined with hypertension. Artificial intelligence, especially machine learning (ML), can develop superior models to predict the prognosis of these patients. This study aimed to develop a machine learning method to predict the 28-day mortality for ICU patients with HF combined with hypertension. METHODS: We enrolled all critically ill patients with HF combined with hypertension in the Medical Information Mart for IntensiveCare Database-IV (MIMIC-IV, v.1.4) and the eICU Collaborative Research Database (eICU-CRD) from 2008 to 2019. Subsequently, MIMIC-IV was divided into training cohort and testing cohort in an 8:2 ratio, and eICU-CRD was designated as the external validation cohort. The least absolute shrinkage and selection operator (LASSO) Cox regression with internal tenfold cross-validation was used for data dimension reduction and identifying the most valuable predictive features for 28-day mortality. Based on its accuracy and area under the curve (AUC), the best model in the validation cohort was selected. In addition, we utilized the Shapley Additive Explanations (SHAP) method to highlight the importance of model features, analyze the impact of individual features on model output, and visualize an individual’s Shapley values. RESULTS: A total of 3,458 and 6582 patients with HF combined with hypertension in MIMIC-IV and eICU-CRD were included. The patients, including 1,756 males, had a median (Q1, Q3) age of 75 (65, 84) years. After selection, 22 out of a total of 58 clinical parameters were extracted to develop the machine-learning models. Among four constructed models, the Neural Networks (NN) model performed the best predictive performance with an AUC of 0.764 and 0.674 in the test cohort and external validation cohort, respectively. In addition, a simplified model including seven variables was built based on NN, which also had good predictive performance (AUC: 0.741). Feature importance analysis showed that age, mechanical ventilation (MECHVENT), chloride, bun, anion gap, paraplegia, rdw (RDW), hyperlipidemia, peripheral capillary oxygen saturation (SpO(2)), respiratory rate, cerebrovascular disease, heart rate, white blood cell (WBC), international normalized ratio (INR), mean corpuscular hemoglobin concentration (MCHC), glucose, AIDS, mean corpuscular volume (MCV), N-terminal pro-brain natriuretic peptide (Npro. BNP), calcium, renal replacement therapy (RRT), and partial thromboplastin time (PTT) were the top 22 features of the NN model with the greatest impact. Finally, after hyperparameter optimization, SHAP plots were employed to make the NN-based model interpretable with an analytical description of how the constructed model visualizes the prediction of death. CONCLUSION: We developed a predictive model to predict the 28-day mortality for ICU patients with HF combined with hypertension, which proved superior to the traditional logistic regression analysis. The SHAP method enables machine learning models to be more interpretable, thereby helping clinicians to better understand the reasoning behind the outcome and assess in-hospital outcomes for critically ill patients. |
format | Online Article Text |
id | pubmed-9597462 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-95974622022-10-27 Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases Peng, Shengxian Huang, Jian Liu, Xiaozhu Deng, Jiewen Sun, Chenyu Tang, Juan Chen, Huaqiao Cao, Wenzhai Wang, Wei Duan, Xiangjie Luo, Xianglin Peng, Shuang Front Cardiovasc Med Cardiovascular Medicine BACKGROUND: Heart failure (HF) combined with hypertension is an extremely important cause of in-hospital mortality, especially for the intensive care unit (ICU) patients. However, under intense working pressure, the medical staff are easily overwhelmed by the large number of clinical signals generated in the ICU, which may lead to treatment delay, sub-optimal care, or even wrong clinical decisions. Individual risk stratification is an essential strategy for managing ICU patients with HF combined with hypertension. Artificial intelligence, especially machine learning (ML), can develop superior models to predict the prognosis of these patients. This study aimed to develop a machine learning method to predict the 28-day mortality for ICU patients with HF combined with hypertension. METHODS: We enrolled all critically ill patients with HF combined with hypertension in the Medical Information Mart for IntensiveCare Database-IV (MIMIC-IV, v.1.4) and the eICU Collaborative Research Database (eICU-CRD) from 2008 to 2019. Subsequently, MIMIC-IV was divided into training cohort and testing cohort in an 8:2 ratio, and eICU-CRD was designated as the external validation cohort. The least absolute shrinkage and selection operator (LASSO) Cox regression with internal tenfold cross-validation was used for data dimension reduction and identifying the most valuable predictive features for 28-day mortality. Based on its accuracy and area under the curve (AUC), the best model in the validation cohort was selected. In addition, we utilized the Shapley Additive Explanations (SHAP) method to highlight the importance of model features, analyze the impact of individual features on model output, and visualize an individual’s Shapley values. RESULTS: A total of 3,458 and 6582 patients with HF combined with hypertension in MIMIC-IV and eICU-CRD were included. The patients, including 1,756 males, had a median (Q1, Q3) age of 75 (65, 84) years. After selection, 22 out of a total of 58 clinical parameters were extracted to develop the machine-learning models. Among four constructed models, the Neural Networks (NN) model performed the best predictive performance with an AUC of 0.764 and 0.674 in the test cohort and external validation cohort, respectively. In addition, a simplified model including seven variables was built based on NN, which also had good predictive performance (AUC: 0.741). Feature importance analysis showed that age, mechanical ventilation (MECHVENT), chloride, bun, anion gap, paraplegia, rdw (RDW), hyperlipidemia, peripheral capillary oxygen saturation (SpO(2)), respiratory rate, cerebrovascular disease, heart rate, white blood cell (WBC), international normalized ratio (INR), mean corpuscular hemoglobin concentration (MCHC), glucose, AIDS, mean corpuscular volume (MCV), N-terminal pro-brain natriuretic peptide (Npro. BNP), calcium, renal replacement therapy (RRT), and partial thromboplastin time (PTT) were the top 22 features of the NN model with the greatest impact. Finally, after hyperparameter optimization, SHAP plots were employed to make the NN-based model interpretable with an analytical description of how the constructed model visualizes the prediction of death. CONCLUSION: We developed a predictive model to predict the 28-day mortality for ICU patients with HF combined with hypertension, which proved superior to the traditional logistic regression analysis. The SHAP method enables machine learning models to be more interpretable, thereby helping clinicians to better understand the reasoning behind the outcome and assess in-hospital outcomes for critically ill patients. Frontiers Media S.A. 2022-10-12 /pmc/articles/PMC9597462/ /pubmed/36312291 http://dx.doi.org/10.3389/fcvm.2022.994359 Text en Copyright © 2022 Peng, Huang, Liu, Deng, Sun, Tang, Chen, Cao, Wang, Duan, Luo and Peng. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Cardiovascular Medicine Peng, Shengxian Huang, Jian Liu, Xiaozhu Deng, Jiewen Sun, Chenyu Tang, Juan Chen, Huaqiao Cao, Wenzhai Wang, Wei Duan, Xiangjie Luo, Xianglin Peng, Shuang Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases |
title | Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases |
title_full | Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases |
title_fullStr | Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases |
title_full_unstemmed | Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases |
title_short | Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases |
title_sort | interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: a retrospective cohort study based on medical information mart for intensive care database-iv and eicu databases |
topic | Cardiovascular Medicine |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9597462/ https://www.ncbi.nlm.nih.gov/pubmed/36312291 http://dx.doi.org/10.3389/fcvm.2022.994359 |
work_keys_str_mv | AT pengshengxian interpretablemachinelearningfor28dayallcauseinhospitalmortalitypredictionincriticallyillpatientswithheartfailurecombinedwithhypertensionaretrospectivecohortstudybasedonmedicalinformationmartforintensivecaredatabaseivandeicudatabases AT huangjian interpretablemachinelearningfor28dayallcauseinhospitalmortalitypredictionincriticallyillpatientswithheartfailurecombinedwithhypertensionaretrospectivecohortstudybasedonmedicalinformationmartforintensivecaredatabaseivandeicudatabases AT liuxiaozhu interpretablemachinelearningfor28dayallcauseinhospitalmortalitypredictionincriticallyillpatientswithheartfailurecombinedwithhypertensionaretrospectivecohortstudybasedonmedicalinformationmartforintensivecaredatabaseivandeicudatabases AT dengjiewen interpretablemachinelearningfor28dayallcauseinhospitalmortalitypredictionincriticallyillpatientswithheartfailurecombinedwithhypertensionaretrospectivecohortstudybasedonmedicalinformationmartforintensivecaredatabaseivandeicudatabases AT sunchenyu interpretablemachinelearningfor28dayallcauseinhospitalmortalitypredictionincriticallyillpatientswithheartfailurecombinedwithhypertensionaretrospectivecohortstudybasedonmedicalinformationmartforintensivecaredatabaseivandeicudatabases AT tangjuan interpretablemachinelearningfor28dayallcauseinhospitalmortalitypredictionincriticallyillpatientswithheartfailurecombinedwithhypertensionaretrospectivecohortstudybasedonmedicalinformationmartforintensivecaredatabaseivandeicudatabases AT chenhuaqiao interpretablemachinelearningfor28dayallcauseinhospitalmortalitypredictionincriticallyillpatientswithheartfailurecombinedwithhypertensionaretrospectivecohortstudybasedonmedicalinformationmartforintensivecaredatabaseivandeicudatabases AT caowenzhai interpretablemachinelearningfor28dayallcauseinhospitalmortalitypredictionincriticallyillpatientswithheartfailurecombinedwithhypertensionaretrospectivecohortstudybasedonmedicalinformationmartforintensivecaredatabaseivandeicudatabases AT wangwei interpretablemachinelearningfor28dayallcauseinhospitalmortalitypredictionincriticallyillpatientswithheartfailurecombinedwithhypertensionaretrospectivecohortstudybasedonmedicalinformationmartforintensivecaredatabaseivandeicudatabases AT duanxiangjie interpretablemachinelearningfor28dayallcauseinhospitalmortalitypredictionincriticallyillpatientswithheartfailurecombinedwithhypertensionaretrospectivecohortstudybasedonmedicalinformationmartforintensivecaredatabaseivandeicudatabases AT luoxianglin interpretablemachinelearningfor28dayallcauseinhospitalmortalitypredictionincriticallyillpatientswithheartfailurecombinedwithhypertensionaretrospectivecohortstudybasedonmedicalinformationmartforintensivecaredatabaseivandeicudatabases AT pengshuang interpretablemachinelearningfor28dayallcauseinhospitalmortalitypredictionincriticallyillpatientswithheartfailurecombinedwithhypertensionaretrospectivecohortstudybasedonmedicalinformationmartforintensivecaredatabaseivandeicudatabases |