Cargando…
Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases
BACKGROUND: Heart failure (HF) combined with hypertension is an extremely important cause of in-hospital mortality, especially for the intensive care unit (ICU) patients. However, under intense working pressure, the medical staff are easily overwhelmed by the large number of clinical signals generat...
Autores principales: | Peng, Shengxian, Huang, Jian, Liu, Xiaozhu, Deng, Jiewen, Sun, Chenyu, Tang, Juan, Chen, Huaqiao, Cao, Wenzhai, Wang, Wei, Duan, Xiangjie, Luo, Xianglin, Peng, Shuang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9597462/ https://www.ncbi.nlm.nih.gov/pubmed/36312291 http://dx.doi.org/10.3389/fcvm.2022.994359 |
Ejemplares similares
-
A Simple Weaning Model Based on Interpretable Machine Learning Algorithm for Patients With Sepsis: A Research of MIMIC-IV and eICU Databases
por: Liu, Wanjun, et al.
Publicado: (2022) -
Circadian rhythm in critically ill patients: Insights from the eICU Database
por: Beyer, Sebastian E., et al.
Publicado: (2021) -
The eICU Collaborative Research Database, a freely available multi-center database for critical care research
por: Pollard, Tom J., et al.
Publicado: (2018) -
E-CatBoost: An efficient machine learning framework for predicting ICU mortality using the eICU Collaborative Research Database
por: Safaei, Nima, et al.
Publicado: (2022) -
The Role of Glucocorticoids in the Treatment of ARDS: A Multicenter Retrospective Study Based on the eICU Collaborative Research Database
por: Zhang, Luming, et al.
Publicado: (2021)