Cargando…

A Geometrically Well-Defined and Systematically Tunable Experimental Model to Transition from Planar to Mesoporous Perovskite Solar Cells

[Image: see text] A series of perovskite solar cells with systematically varying surface area of the interface between n-type electron conducting layer (TiO(2)) and perovskite are prepared by using an ordered array of straight, cylindrical nanopores generated by anodizing an aluminum layer evaporate...

Descripción completa

Detalles Bibliográficos
Autores principales: Döhler, Dirk, Büttner, Pascal, Scheler, Florian, Thiel, Dominik, Puscher, Bianka, Bochmann, Sebastian, Mitrovic, Julian, Boix, Pablo P., Guldi, Dirk M., Mínguez-Bacho, Ignacio, Bachmann, Julien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9597550/
https://www.ncbi.nlm.nih.gov/pubmed/36311464
http://dx.doi.org/10.1021/acsaem.2c00870
_version_ 1784816118116909056
author Döhler, Dirk
Büttner, Pascal
Scheler, Florian
Thiel, Dominik
Puscher, Bianka
Bochmann, Sebastian
Mitrovic, Julian
Boix, Pablo P.
Guldi, Dirk M.
Mínguez-Bacho, Ignacio
Bachmann, Julien
author_facet Döhler, Dirk
Büttner, Pascal
Scheler, Florian
Thiel, Dominik
Puscher, Bianka
Bochmann, Sebastian
Mitrovic, Julian
Boix, Pablo P.
Guldi, Dirk M.
Mínguez-Bacho, Ignacio
Bachmann, Julien
author_sort Döhler, Dirk
collection PubMed
description [Image: see text] A series of perovskite solar cells with systematically varying surface area of the interface between n-type electron conducting layer (TiO(2)) and perovskite are prepared by using an ordered array of straight, cylindrical nanopores generated by anodizing an aluminum layer evaporated onto a transparent conducting electrode. A series of samples with pore length varied from 100 to 500 nm are compared to each other and complemented by a classical planar cell and a mesoporous counterpart. All samples are characterized in terms of morphology, chemistry, optical properties, and performance. All samples absorb light to the same degree, and the increased interface area does not generate enhanced recombination. However, the short circuit current density increases monotonically with the specific surface area, indicating improved charge extraction efficiency. The importance of the slow interfacial rearrangement of ions associated with planar perovskite cells is shown to decrease in a systematic manner as the interfacial surface area increases. The results demonstrate that planar and mesoporous cells obey to the same physical principles and differ from each other quantitatively, not qualitatively. Additionally, the study shows that a significantly lower TiO(2) surface area compared to mesoporous TiO(2) is needed for an equal charge extraction.
format Online
Article
Text
id pubmed-9597550
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-95975502022-10-27 A Geometrically Well-Defined and Systematically Tunable Experimental Model to Transition from Planar to Mesoporous Perovskite Solar Cells Döhler, Dirk Büttner, Pascal Scheler, Florian Thiel, Dominik Puscher, Bianka Bochmann, Sebastian Mitrovic, Julian Boix, Pablo P. Guldi, Dirk M. Mínguez-Bacho, Ignacio Bachmann, Julien ACS Appl Energy Mater [Image: see text] A series of perovskite solar cells with systematically varying surface area of the interface between n-type electron conducting layer (TiO(2)) and perovskite are prepared by using an ordered array of straight, cylindrical nanopores generated by anodizing an aluminum layer evaporated onto a transparent conducting electrode. A series of samples with pore length varied from 100 to 500 nm are compared to each other and complemented by a classical planar cell and a mesoporous counterpart. All samples are characterized in terms of morphology, chemistry, optical properties, and performance. All samples absorb light to the same degree, and the increased interface area does not generate enhanced recombination. However, the short circuit current density increases monotonically with the specific surface area, indicating improved charge extraction efficiency. The importance of the slow interfacial rearrangement of ions associated with planar perovskite cells is shown to decrease in a systematic manner as the interfacial surface area increases. The results demonstrate that planar and mesoporous cells obey to the same physical principles and differ from each other quantitatively, not qualitatively. Additionally, the study shows that a significantly lower TiO(2) surface area compared to mesoporous TiO(2) is needed for an equal charge extraction. American Chemical Society 2022-09-22 2022-10-24 /pmc/articles/PMC9597550/ /pubmed/36311464 http://dx.doi.org/10.1021/acsaem.2c00870 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Döhler, Dirk
Büttner, Pascal
Scheler, Florian
Thiel, Dominik
Puscher, Bianka
Bochmann, Sebastian
Mitrovic, Julian
Boix, Pablo P.
Guldi, Dirk M.
Mínguez-Bacho, Ignacio
Bachmann, Julien
A Geometrically Well-Defined and Systematically Tunable Experimental Model to Transition from Planar to Mesoporous Perovskite Solar Cells
title A Geometrically Well-Defined and Systematically Tunable Experimental Model to Transition from Planar to Mesoporous Perovskite Solar Cells
title_full A Geometrically Well-Defined and Systematically Tunable Experimental Model to Transition from Planar to Mesoporous Perovskite Solar Cells
title_fullStr A Geometrically Well-Defined and Systematically Tunable Experimental Model to Transition from Planar to Mesoporous Perovskite Solar Cells
title_full_unstemmed A Geometrically Well-Defined and Systematically Tunable Experimental Model to Transition from Planar to Mesoporous Perovskite Solar Cells
title_short A Geometrically Well-Defined and Systematically Tunable Experimental Model to Transition from Planar to Mesoporous Perovskite Solar Cells
title_sort geometrically well-defined and systematically tunable experimental model to transition from planar to mesoporous perovskite solar cells
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9597550/
https://www.ncbi.nlm.nih.gov/pubmed/36311464
http://dx.doi.org/10.1021/acsaem.2c00870
work_keys_str_mv AT dohlerdirk ageometricallywelldefinedandsystematicallytunableexperimentalmodeltotransitionfromplanartomesoporousperovskitesolarcells
AT buttnerpascal ageometricallywelldefinedandsystematicallytunableexperimentalmodeltotransitionfromplanartomesoporousperovskitesolarcells
AT schelerflorian ageometricallywelldefinedandsystematicallytunableexperimentalmodeltotransitionfromplanartomesoporousperovskitesolarcells
AT thieldominik ageometricallywelldefinedandsystematicallytunableexperimentalmodeltotransitionfromplanartomesoporousperovskitesolarcells
AT puscherbianka ageometricallywelldefinedandsystematicallytunableexperimentalmodeltotransitionfromplanartomesoporousperovskitesolarcells
AT bochmannsebastian ageometricallywelldefinedandsystematicallytunableexperimentalmodeltotransitionfromplanartomesoporousperovskitesolarcells
AT mitrovicjulian ageometricallywelldefinedandsystematicallytunableexperimentalmodeltotransitionfromplanartomesoporousperovskitesolarcells
AT boixpablop ageometricallywelldefinedandsystematicallytunableexperimentalmodeltotransitionfromplanartomesoporousperovskitesolarcells
AT guldidirkm ageometricallywelldefinedandsystematicallytunableexperimentalmodeltotransitionfromplanartomesoporousperovskitesolarcells
AT minguezbachoignacio ageometricallywelldefinedandsystematicallytunableexperimentalmodeltotransitionfromplanartomesoporousperovskitesolarcells
AT bachmannjulien ageometricallywelldefinedandsystematicallytunableexperimentalmodeltotransitionfromplanartomesoporousperovskitesolarcells
AT dohlerdirk geometricallywelldefinedandsystematicallytunableexperimentalmodeltotransitionfromplanartomesoporousperovskitesolarcells
AT buttnerpascal geometricallywelldefinedandsystematicallytunableexperimentalmodeltotransitionfromplanartomesoporousperovskitesolarcells
AT schelerflorian geometricallywelldefinedandsystematicallytunableexperimentalmodeltotransitionfromplanartomesoporousperovskitesolarcells
AT thieldominik geometricallywelldefinedandsystematicallytunableexperimentalmodeltotransitionfromplanartomesoporousperovskitesolarcells
AT puscherbianka geometricallywelldefinedandsystematicallytunableexperimentalmodeltotransitionfromplanartomesoporousperovskitesolarcells
AT bochmannsebastian geometricallywelldefinedandsystematicallytunableexperimentalmodeltotransitionfromplanartomesoporousperovskitesolarcells
AT mitrovicjulian geometricallywelldefinedandsystematicallytunableexperimentalmodeltotransitionfromplanartomesoporousperovskitesolarcells
AT boixpablop geometricallywelldefinedandsystematicallytunableexperimentalmodeltotransitionfromplanartomesoporousperovskitesolarcells
AT guldidirkm geometricallywelldefinedandsystematicallytunableexperimentalmodeltotransitionfromplanartomesoporousperovskitesolarcells
AT minguezbachoignacio geometricallywelldefinedandsystematicallytunableexperimentalmodeltotransitionfromplanartomesoporousperovskitesolarcells
AT bachmannjulien geometricallywelldefinedandsystematicallytunableexperimentalmodeltotransitionfromplanartomesoporousperovskitesolarcells