Cargando…
Heteroatom Manipulation of Zeolite Crystallization: Stabilizing Zn-FAU against Interzeolite Transformation
[Image: see text] The preparation of metastable zeolites is often restricted to a limited range of synthesis conditions, which is exemplified in commercial syntheses lacking organics to stabilize the crystal structure. In the absence of an organic structure-directing agent, interzeolite transformati...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9597603/ https://www.ncbi.nlm.nih.gov/pubmed/36311839 http://dx.doi.org/10.1021/jacsau.2c00325 |
_version_ | 1784816130948333568 |
---|---|
author | Mallette, Adam J. Hong, Sungil Freeman, Emily E. Saslow, Sarah A. Mergelsberg, Sebastian Motkuri, Radha K. Neeway, James J. Mpourmpakis, Giannis Rimer, Jeffrey D. |
author_facet | Mallette, Adam J. Hong, Sungil Freeman, Emily E. Saslow, Sarah A. Mergelsberg, Sebastian Motkuri, Radha K. Neeway, James J. Mpourmpakis, Giannis Rimer, Jeffrey D. |
author_sort | Mallette, Adam J. |
collection | PubMed |
description | [Image: see text] The preparation of metastable zeolites is often restricted to a limited range of synthesis conditions, which is exemplified in commercial syntheses lacking organics to stabilize the crystal structure. In the absence of an organic structure-directing agent, interzeolite transformation is a common phenomenon that can lead to undesirable products or impurities. Many studies have investigated the substitution of Si and Al in zeolite frameworks with alternative elements (heteroatoms) as a means of tailoring the properties of zeolites; however, relatively few studies have systematically explored the impact of heteroatoms on interzeolite transformations and their concomitant effects on zeolite crystallization. In this study, we examine methods to prepare isostructures of faujasite (FAU), which is one of the most commercially relevant zeolites and also a thermodynamically metastable structure. A survey of multivalent elements revealed that zinc is capable of stabilizing FAU at high temperatures and inhibiting its frequent transformation to zeolite gismondine (GIS). Using combined experimental and computational studies, we show that zinc alters the chemical nature of growth mixtures by sequestering silicates. Zinc heteroatoms incorporate in the FAU framework with a loading-dependent coordination. Our collective findings provide an improved understanding of driving forces for the FAU-to-GIS interzeolite transformation where we observe that heteroatoms (e.g., zinc) can stabilize zeolite FAU over a broad range of synthesis conditions. Given the growing interest in heteroatom-substituted zeolites, this approach to preparing zinc-containing FAU may prove applicable to a broader range of zeolite structures. |
format | Online Article Text |
id | pubmed-9597603 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-95976032022-10-27 Heteroatom Manipulation of Zeolite Crystallization: Stabilizing Zn-FAU against Interzeolite Transformation Mallette, Adam J. Hong, Sungil Freeman, Emily E. Saslow, Sarah A. Mergelsberg, Sebastian Motkuri, Radha K. Neeway, James J. Mpourmpakis, Giannis Rimer, Jeffrey D. JACS Au [Image: see text] The preparation of metastable zeolites is often restricted to a limited range of synthesis conditions, which is exemplified in commercial syntheses lacking organics to stabilize the crystal structure. In the absence of an organic structure-directing agent, interzeolite transformation is a common phenomenon that can lead to undesirable products or impurities. Many studies have investigated the substitution of Si and Al in zeolite frameworks with alternative elements (heteroatoms) as a means of tailoring the properties of zeolites; however, relatively few studies have systematically explored the impact of heteroatoms on interzeolite transformations and their concomitant effects on zeolite crystallization. In this study, we examine methods to prepare isostructures of faujasite (FAU), which is one of the most commercially relevant zeolites and also a thermodynamically metastable structure. A survey of multivalent elements revealed that zinc is capable of stabilizing FAU at high temperatures and inhibiting its frequent transformation to zeolite gismondine (GIS). Using combined experimental and computational studies, we show that zinc alters the chemical nature of growth mixtures by sequestering silicates. Zinc heteroatoms incorporate in the FAU framework with a loading-dependent coordination. Our collective findings provide an improved understanding of driving forces for the FAU-to-GIS interzeolite transformation where we observe that heteroatoms (e.g., zinc) can stabilize zeolite FAU over a broad range of synthesis conditions. Given the growing interest in heteroatom-substituted zeolites, this approach to preparing zinc-containing FAU may prove applicable to a broader range of zeolite structures. American Chemical Society 2022-09-06 /pmc/articles/PMC9597603/ /pubmed/36311839 http://dx.doi.org/10.1021/jacsau.2c00325 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Mallette, Adam J. Hong, Sungil Freeman, Emily E. Saslow, Sarah A. Mergelsberg, Sebastian Motkuri, Radha K. Neeway, James J. Mpourmpakis, Giannis Rimer, Jeffrey D. Heteroatom Manipulation of Zeolite Crystallization: Stabilizing Zn-FAU against Interzeolite Transformation |
title | Heteroatom Manipulation
of Zeolite Crystallization:
Stabilizing Zn-FAU against Interzeolite Transformation |
title_full | Heteroatom Manipulation
of Zeolite Crystallization:
Stabilizing Zn-FAU against Interzeolite Transformation |
title_fullStr | Heteroatom Manipulation
of Zeolite Crystallization:
Stabilizing Zn-FAU against Interzeolite Transformation |
title_full_unstemmed | Heteroatom Manipulation
of Zeolite Crystallization:
Stabilizing Zn-FAU against Interzeolite Transformation |
title_short | Heteroatom Manipulation
of Zeolite Crystallization:
Stabilizing Zn-FAU against Interzeolite Transformation |
title_sort | heteroatom manipulation
of zeolite crystallization:
stabilizing zn-fau against interzeolite transformation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9597603/ https://www.ncbi.nlm.nih.gov/pubmed/36311839 http://dx.doi.org/10.1021/jacsau.2c00325 |
work_keys_str_mv | AT malletteadamj heteroatommanipulationofzeolitecrystallizationstabilizingznfauagainstinterzeolitetransformation AT hongsungil heteroatommanipulationofzeolitecrystallizationstabilizingznfauagainstinterzeolitetransformation AT freemanemilye heteroatommanipulationofzeolitecrystallizationstabilizingznfauagainstinterzeolitetransformation AT saslowsaraha heteroatommanipulationofzeolitecrystallizationstabilizingznfauagainstinterzeolitetransformation AT mergelsbergsebastian heteroatommanipulationofzeolitecrystallizationstabilizingznfauagainstinterzeolitetransformation AT motkuriradhak heteroatommanipulationofzeolitecrystallizationstabilizingznfauagainstinterzeolitetransformation AT neewayjamesj heteroatommanipulationofzeolitecrystallizationstabilizingznfauagainstinterzeolitetransformation AT mpourmpakisgiannis heteroatommanipulationofzeolitecrystallizationstabilizingznfauagainstinterzeolitetransformation AT rimerjeffreyd heteroatommanipulationofzeolitecrystallizationstabilizingznfauagainstinterzeolitetransformation |