Cargando…
Behavior policy learning: Learning multi-stage tasks via solution sketches and model-based controllers
Multi-stage tasks are a challenge for reinforcement learning methods, and require either specific task knowledge (e.g., task segmentation) or big amount of interaction times to be learned. In this paper, we propose Behavior Policy Learning (BPL) that effectively combines 1) only few solution sketche...
Autores principales: | Tsinganos, Konstantinos, Chatzilygeroudis, Konstantinos, Hadjivelichkov, Denis, Komninos, Theodoros, Dermatas, Evangelos, Kanoulas, Dimitrios |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9597635/ https://www.ncbi.nlm.nih.gov/pubmed/36313244 http://dx.doi.org/10.3389/frobt.2022.974537 |
Ejemplares similares
-
Editorial: Towards Real-World Deployment of Legged Robots
por: Kottege, Navinda, et al.
Publicado: (2022) -
Learning a Set of Interrelated Tasks by Using a Succession of Motor Policies for a Socially Guided Intrinsically Motivated Learner
por: Duminy, Nicolas, et al.
Publicado: (2019) -
Ostensive-Cue Sensitive Learning and Exclusive Evaluation of Policies: A Solution for Measuring Contingency of Experiences for Social Developmental Robot
por: Mahzoon, Hamed, et al.
Publicado: (2019) -
Multi-Channel Interactive Reinforcement Learning for Sequential Tasks
por: Koert, Dorothea, et al.
Publicado: (2020) -
Modeling Task Uncertainty for Safe Meta-Imitation Learning
por: Matsushima, Tatsuya, et al.
Publicado: (2020)