Cargando…
Functional Output Regression for Machine Learning in Materials Science
[Image: see text] In recent years, there has been a rapid growth in the use of machine learning in material science. Conventionally, a trained predictive model describes a scalar output variable, such as thermodynamic, electronic, or mechanical properties, as a function of input descriptors that vec...
Autores principales: | Iwayama, Megumi, Wu, Stephen, Liu, Chang, Yoshida, Ryo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9597664/ https://www.ncbi.nlm.nih.gov/pubmed/36216342 http://dx.doi.org/10.1021/acs.jcim.2c00626 |
Ejemplares similares
-
Data quantity governance for machine learning in materials science
por: Liu, Yue, et al.
Publicado: (2023) -
Big data and machine learning for materials science
por: Rodrigues, Jose F., et al.
Publicado: (2021) -
Big-Data Science
in Porous Materials: Materials Genomics
and Machine Learning
por: Jablonka, Kevin Maik, et al.
Publicado: (2020) -
A Review of Performance Prediction Based on Machine Learning in Materials Science
por: Fu, Ziyang, et al.
Publicado: (2022) -
Identifying domains of applicability of machine learning models for materials science
por: Sutton, Christopher, et al.
Publicado: (2020)