Cargando…
Learning joints relation graphs for video action recognition
Previous video action recognition mainly focuses on extracting spatial and temporal features from videos or capturing physical dependencies among joints. The relation between joints is often ignored. Modeling the relation between joints is important for action recognition. Aiming at learning discrim...
Autores principales: | Liu, Xiaodong, Xu, Huating, Wang, Miao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9597689/ https://www.ncbi.nlm.nih.gov/pubmed/36310629 http://dx.doi.org/10.3389/fnbot.2022.918434 |
Ejemplares similares
-
Sparse Spatial-Temporal Emotion Graph Convolutional Network for Video Emotion Recognition
por: Liu, Xiaodong, et al.
Publicado: (2022) -
Region Dual Attention-Based Video Emotion Recognition
por: Liu, Xiaodong, et al.
Publicado: (2022) -
Multi-scale and attention enhanced graph convolution network for skeleton-based violence action recognition
por: Yang, Huaigang, et al.
Publicado: (2022) -
Multimodal interaction enhanced representation learning for video emotion recognition
por: Xia, Xiaohan, et al.
Publicado: (2022) -
Emotion Recognition With Knowledge Graph Based on Electrodermal Activity
por: Perry Fordson, Hayford, et al.
Publicado: (2022)