Cargando…
Public sentiment on the global outbreak of monkeypox: an unsupervised machine learning analysis of 352,182 twitter posts
OBJECTIVES: This study aimed to study the public's sentiments on the current monkeypox outbreaks via an unsupervised machine learning analysis of social media posts. STUDY DESIGN: This was an exploratory analysis of tweets sentiments. METHODS: We extracted original tweets containing the terms ‘...
Autores principales: | Ng, Q.X., Yau, C.E., Lim, Y.L., Wong, L.K.T., Liew, T.M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society for Public Health. Published by Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9597903/ https://www.ncbi.nlm.nih.gov/pubmed/36308872 http://dx.doi.org/10.1016/j.puhe.2022.09.008 |
Ejemplares similares
-
Examining the Prevailing Negative Sentiments Related to COVID-19 Vaccination: Unsupervised Deep Learning of Twitter Posts over a 16 Month Period
por: Ng, Qin Xiang, et al.
Publicado: (2022) -
Examining the Negative Sentiments Related to Influenza Vaccination from 2017 to 2022: An Unsupervised Deep Learning Analysis of 261,613 Twitter Posts
por: Ng, Qin Xiang, et al.
Publicado: (2023) -
Exploring the sentiment of entrepreneurs on Twitter
por: Waters, James, et al.
Publicado: (2021) -
Identification of affective valence of Twitter generated sentiments during the COVID-19 outbreak
por: Mittal, Ruchi, et al.
Publicado: (2021) -
Public perception on 'healthy ageing' in the past decade: An unsupervised machine learning of 63,809 Twitter posts
por: Ng, Qin Xiang, et al.
Publicado: (2023)