Cargando…
Molecular Basis of Non-β-Lactam Antibiotics Resistance in Staphylococcus aureus
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most successful human pathogens with the potential to cause significant morbidity and mortality. MRSA has acquired resistance to almost all β-lactam antibiotics, including the new-generation cephalosporins, and is often also resistant...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9598170/ https://www.ncbi.nlm.nih.gov/pubmed/36290036 http://dx.doi.org/10.3390/antibiotics11101378 |
Sumario: | Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most successful human pathogens with the potential to cause significant morbidity and mortality. MRSA has acquired resistance to almost all β-lactam antibiotics, including the new-generation cephalosporins, and is often also resistant to multiple other antibiotic classes. The expression of penicillin-binding protein 2a (PBP2a) is the primary basis for β-lactams resistance by MRSA, but it is coupled with other resistance mechanisms, conferring resistance to non-β-lactam antibiotics. The multiplicity of resistance mechanisms includes target modification, enzymatic drug inactivation, and decreased antibiotic uptake or efflux. This review highlights the molecular basis of resistance to non-β-lactam antibiotics recommended to treat MRSA infections such as macrolides, lincosamides, aminoglycosides, glycopeptides, oxazolidinones, lipopeptides, and others. A thorough understanding of the molecular and biochemical basis of antibiotic resistance in clinical isolates could help in developing promising therapies and molecular detection methods of antibiotic resistance. |
---|