Cargando…
Prediction of the Ibuprofen Loading Capacity of MOFs by Machine Learning
Metal-organic frameworks (MOFs) have been widely researched as drug delivery systems due to their intrinsic porous structures. Herein, machine learning (ML) technologies were applied for the screening of MOFs with high drug loading capacity. To achieve this, first, a comprehensive dataset was gather...
Autores principales: | Liu, Xujie, Wang, Yang, Yuan, Jiongpeng, Li, Xiaojing, Wu, Siwei, Bao, Ying, Feng, Zhenzhen, Ou, Feilong, He, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9598200/ https://www.ncbi.nlm.nih.gov/pubmed/36290485 http://dx.doi.org/10.3390/bioengineering9100517 |
Ejemplares similares
-
Bifunctional scaffolds for tumor therapy and bone regeneration: Synergistic effect and interplay between therapeutic agents and scaffold materials
por: Yuan, Jiongpeng, et al.
Publicado: (2022) -
Predicting hydrogen storage in MOFs via machine learning
por: Ahmed, Alauddin, et al.
Publicado: (2021) -
Enhancement of the Solubility of BS Class II Drugs with MOF and MOF/GO Composite Materials: Case Studies of Felodipine, Ketoprofen and Ibuprofen
por: Han, Jinyang, et al.
Publicado: (2023) -
MOF Synthesis Prediction Enabled by Automatic Data Mining and Machine Learning
por: Luo, Yi, et al.
Publicado: (2022) -
Combining Machine
Learning and Molecular Simulations
to Unlock Gas Separation Potentials of MOF Membranes and MOF/Polymer
MMMs
por: Daglar, Hilal, et al.
Publicado: (2022)