Cargando…
Autoencoder Composite Scoring to Evaluate Prosthetic Performance in Individuals with Lower Limb Amputation
We created an overall assessment metric using a deep learning autoencoder to directly compare clinical outcomes in a comparison of lower limb amputees using two different prosthetic devices—a mechanical knee and a microprocessor-controlled knee. Eight clinical outcomes were distilled into a single m...
Autores principales: | Tabashum, Thasina, Xiao, Ting, Jayaraman, Chandrasekaran, Mummidisetty, Chaithanya K., Jayaraman, Arun, Albert, Mark V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9598529/ https://www.ncbi.nlm.nih.gov/pubmed/36290540 http://dx.doi.org/10.3390/bioengineering9100572 |
Ejemplares similares
-
Fall Detection in Individuals With Lower Limb Amputations Using Mobile Phones: Machine Learning Enhances Robustness for Real-World Applications
por: Shawen, Nicholas, et al.
Publicado: (2017) -
Addendum of: Fall Detection in Individuals With Lower Limb Amputations Using Mobile Phones: Machine Learning Enhances Robustness for Real-World Applications
por: Shawen, Nicholas, et al.
Publicado: (2017) -
Using a microprocessor knee (C-Leg) with appropriate foot transitioned individuals with dysvascular transfemoral amputations to higher performance levels: a longitudinal randomized clinical trial
por: Jayaraman, Chandrasekaran, et al.
Publicado: (2021) -
Variables influencing wearable sensor outcome estimates in individuals with stroke and incomplete spinal cord injury: a pilot investigation validating two research grade sensors
por: Jayaraman, Chandrasekaran, et al.
Publicado: (2018) -
Monitoring Functional Capability of Individuals with Lower Limb Amputations Using Mobile Phones
por: Albert, Mark V., et al.
Publicado: (2013)