Cargando…
Predicting Analyte Concentrations from Electrochemical Aptasensor Signals Using LSTM Recurrent Networks
Nanomaterial-based aptasensors are useful devices capable of detecting small biological species. Determining suitable signal processing methods can improve the identification and quantification of target analytes detected by the biosensor and consequently improve the biosensor’s performance. In this...
Autores principales: | Esmaeili, Fatemeh, Cassie, Erica, Nguyen, Hong Phan T., Plank, Natalie O. V., Unsworth, Charles P., Wang, Alan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9598695/ https://www.ncbi.nlm.nih.gov/pubmed/36290497 http://dx.doi.org/10.3390/bioengineering9100529 |
Ejemplares similares
-
Anomaly Detection for Sensor Signals Utilizing Deep Learning Autoencoder-Based Neural Networks
por: Esmaeili, Fatemeh, et al.
Publicado: (2023) -
Comparison of Duplex and Quadruplex Folding Structure Adenosine Aptamers for Carbon Nanotube Field Effect Transistor Aptasensors
por: Nguyen, Hong Phan T., et al.
Publicado: (2021) -
Nanoscaled aptasensors for multi-analyte sensing
por: Saberian-Borujeni, Mehdi, et al.
Publicado: (2014) -
A nanoporous gold-based electrochemical aptasensor for sensitive detection of cocaine
por: Tavakkoli, Nahid, et al.
Publicado: (2019) -
Cancer Diagnostics and Early Detection Using Electrochemical Aptasensors
por: Omage, Joel Imoukhuede, et al.
Publicado: (2022)