Cargando…
Antibiofilm Effect of Cinnamaldehyde-Chitosan Nanoparticles against the Biofilm of Staphylococcus aureus
Food contamination caused by food-spoilage bacteria and pathogenic bacteria seriously affects public health. Staphylococcus aureus is a typical foodborne pathogen which easily forms biofilm. Once biofilm is formed, it is difficult to remove. The use of nanotechnology for antibiofilm purposes is beco...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9598764/ https://www.ncbi.nlm.nih.gov/pubmed/36290061 http://dx.doi.org/10.3390/antibiotics11101403 |
Sumario: | Food contamination caused by food-spoilage bacteria and pathogenic bacteria seriously affects public health. Staphylococcus aureus is a typical foodborne pathogen which easily forms biofilm. Once biofilm is formed, it is difficult to remove. The use of nanotechnology for antibiofilm purposes is becoming more widespread because of its ability to increase the bioavailability and biosorption of many drugs. In this work, chitosan nanoparticles (CSNPs) were prepared by the ion–gel method with polyanionic sodium triphosphate (TPP). Cinnamaldehyde (CA) was loaded onto the CSNPs. The particle size, potential, morphology, encapsulation efficiency and in vitro release behavior of cinnamaldehyde–chitosan nanoparticles (CSNP-CAs) were studied, and the activity of CA against S. aureus biofilms was evaluated. The biofilm structure on the silicone surface was investigated by scanning electron microscopy (SEM). Confocal laser scanning microscopy (CLSM) was used to detect live/dead organisms within biofilms. The results showed that CSNP-CAs were dispersed in a circle with an average diameter of 298.1 nm and a zeta potential of +38.73 mV. The encapsulation efficiency of cinnamaldehyde (CA) reached 39.7%. In vitro release studies have shown that CA can be continuously released from the CSNPs. Compared with free drugs, CSNP-CAs have a higher efficacy in removing S. aureus biofilm, and the eradication rate of biofilm can reach 61%. The antibiofilm effects of CSNP-CAs are determined by their antibacterial properties. The minimum inhibitory concentration (MIC) of CA is 1.25 mg/mL; at this concentration the bacterial cell wall ruptures and the permeability of the cell membrane increases, which leads to leakage of the contents. At the same time, we verified that the MIC of CSNP-CAs is 2.5 mg/mL (drug concentration). The synergy between CA and CSNPs demonstrates the combinatorial application of a composite as an efficient novel therapeutic agent against antibiofilm. We can apply it in food preservation and other contexts, providing new ideas for food preservation. |
---|