Cargando…
Estimating the Prognosis of Low-Grade Glioma with Gene Attention Using Multi-Omics and Multi-Modal Schemes
SIMPLE SUMMARY: The estimation of the prognosis of low-grade glioma (LGG) patients using deep learning models and gene expression data has been intensively studied in recent years. Existing studies, however, have only considered mRNA expression data, ignoring other expression data and clinical data....
Autores principales: | Choi, Sanghyuk Roy, Lee, Minhyeok |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9598836/ https://www.ncbi.nlm.nih.gov/pubmed/36290366 http://dx.doi.org/10.3390/biology11101462 |
Ejemplares similares
-
An Ensemble Deep Learning Model with a Gene Attention Mechanism for Estimating the Prognosis of Low-Grade Glioma
por: Lee, Minhyeok
Publicado: (2022) -
Transformer Architecture and Attention Mechanisms in Genome Data Analysis: A Comprehensive Review
por: Choi, Sanghyuk Roy, et al.
Publicado: (2023) -
Integrated Multi-Omics Maps of Lower-Grade Gliomas
por: Binder, Hans, et al.
Publicado: (2022) -
LGG-19. MULTI-MODALITY CHARACTERIZATION OF PEDIATRIC LOW-GRADE GLIOMA: THE ADDED VALUE OF DIFFERENT DATA MODALITIES
por: Haldar, Debanjan, et al.
Publicado: (2023) -
LGG-44. Multi-omic analysis reveals integrated signalling networks in paediatric low-grade glioma
por: Woodward, Lewis, et al.
Publicado: (2022)