Cargando…
Design and Synthesis of (Z)-5-(Substituted benzylidene)-3-cyclohexyl-2-thioxothiazolidin-4-one Analogues as Anti-Tyrosinase and Antioxidant Compounds: In Vitro and In Silico Insights
Many compounds containing the β-phenyl-α,β-unsaturated carbonyl (PUSC) scaffold, including cinnamamide derivatives, have been shown to inhibit tyrosinase potently in vitro and in vivo. Structural changes to cinnamamide derivatives were produced by adding a dithionate functional group to provide eigh...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9598926/ https://www.ncbi.nlm.nih.gov/pubmed/36290640 http://dx.doi.org/10.3390/antiox11101918 |
Sumario: | Many compounds containing the β-phenyl-α,β-unsaturated carbonyl (PUSC) scaffold, including cinnamamide derivatives, have been shown to inhibit tyrosinase potently in vitro and in vivo. Structural changes to cinnamamide derivatives were produced by adding a dithionate functional group to provide eight (Z)-5-(substituted benzylidene)-3-cyclohexyl-2-thioxothiazolidin-4-one analogs with high log p values for skin. These analogs were synthesized using a two-step reaction, and their stereochemistry was confirmed using the (3)J(C4-Hβ) values of C4 measured in proton-coupled (13)C mode. Analogs 2 (IC(50) = 5.21 ± 0.86 µM) and 3 (IC(50) = 1.03 ± 0.14 µM) more potently inhibited mushroom tyrosinase than kojic acid (IC(50) = 25.26 ± 1.10 µM). Docking results showed 2 binds strongly to the active site of tyrosinase, while 3 binds strongly to an allosteric site. Kinetic studies using l-tyrosine as substrate indicated 2 and 3 competitively and non-competitively inhibit tyrosinase, respectively, which was supported by our docking results. In B16F10 cells, 3 significantly and concentration-dependently reduced α–MSH plus IBMX induced increases in cellular tyrosinase activity and melanin production and the similarity between these inhibitory patterns implied that the anti-melanogenic effect of 3 might be due to its tyrosinase-inhibitory ability. In addition, 2 and 3 exhibited strong antioxidant effects; for example, they reduced ROS and ONOO(–) levels and exhibited radical scavenging activities, suggesting that these effects might underlie their anti-melanogenic effects. Furthermore, 3 suppressed the expressions of melanogenesis-associated proteins and genes in B16F10 cells. These results suggest (Z)-5-(substituted benzylidene)-3-cyclohexyl-2-thioxothiazolidin-4-one analogs offer a means of producing novel anti-melanogenesis agents. |
---|