Cargando…

Folic Acid Improves Parkin-Null Drosophila Phenotypes and Transiently Reduces Vulnerable Dopaminergic Neuron Mitochondrial Hydrogen Peroxide Levels and Glutathione Redox Equilibrium

Loss-of-function parkin mutations cause oxidative stress and degeneration of dopaminergic neurons in the substantia nigra. Several consequences of parkin mutations have been described; to what degree they contribute to selective neurodegeneration remains unclear. Specific factors initiating excessiv...

Descripción completa

Detalles Bibliográficos
Autores principales: Houlihan, Katherine L., Keoseyan, Petros P., Juba, Amber N., Margaryan, Tigran, Voss, Max E., Babaoghli, Alexander M., Norris, Justin M., Adrian, Greg J., Tovmasyan, Artak, Buhlman, Lori M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9598960/
https://www.ncbi.nlm.nih.gov/pubmed/36290790
http://dx.doi.org/10.3390/antiox11102068
_version_ 1784816477434544128
author Houlihan, Katherine L.
Keoseyan, Petros P.
Juba, Amber N.
Margaryan, Tigran
Voss, Max E.
Babaoghli, Alexander M.
Norris, Justin M.
Adrian, Greg J.
Tovmasyan, Artak
Buhlman, Lori M.
author_facet Houlihan, Katherine L.
Keoseyan, Petros P.
Juba, Amber N.
Margaryan, Tigran
Voss, Max E.
Babaoghli, Alexander M.
Norris, Justin M.
Adrian, Greg J.
Tovmasyan, Artak
Buhlman, Lori M.
author_sort Houlihan, Katherine L.
collection PubMed
description Loss-of-function parkin mutations cause oxidative stress and degeneration of dopaminergic neurons in the substantia nigra. Several consequences of parkin mutations have been described; to what degree they contribute to selective neurodegeneration remains unclear. Specific factors initiating excessive reactive oxygen species production, inefficient antioxidant capacity, or a combination are elusive. Identifying key oxidative stress contributors could inform targeted therapy. The absence of Drosophila parkin causes selective degeneration of a dopaminergic neuron cluster that is functionally homologous to the substantia nigra. By comparing observations in these to similar non-degenerating neurons, we may begin to understand mechanisms by which parkin loss of function causes selective degeneration. Using mitochondrially targeted redox-sensitive GFP2 fused with redox enzymes, we observed a sustained increased mitochondrial hydrogen peroxide levels in vulnerable dopaminergic neurons of parkin-null flies. Only transient increases in hydrogen peroxide were observed in similar but non-degenerating neurons. Glutathione redox equilibrium is preferentially dysregulated in vulnerable neuron mitochondria. To shed light on whether dysregulated glutathione redox equilibrium primarily contributes to oxidative stress, we supplemented food with folic acid, which can increase cysteine and glutathione levels. Folic acid improved survival, climbing, and transiently decreased hydrogen peroxide and glutathione redox equilibrium but did not mitigate whole-brain oxidative stress.
format Online
Article
Text
id pubmed-9598960
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-95989602022-10-27 Folic Acid Improves Parkin-Null Drosophila Phenotypes and Transiently Reduces Vulnerable Dopaminergic Neuron Mitochondrial Hydrogen Peroxide Levels and Glutathione Redox Equilibrium Houlihan, Katherine L. Keoseyan, Petros P. Juba, Amber N. Margaryan, Tigran Voss, Max E. Babaoghli, Alexander M. Norris, Justin M. Adrian, Greg J. Tovmasyan, Artak Buhlman, Lori M. Antioxidants (Basel) Article Loss-of-function parkin mutations cause oxidative stress and degeneration of dopaminergic neurons in the substantia nigra. Several consequences of parkin mutations have been described; to what degree they contribute to selective neurodegeneration remains unclear. Specific factors initiating excessive reactive oxygen species production, inefficient antioxidant capacity, or a combination are elusive. Identifying key oxidative stress contributors could inform targeted therapy. The absence of Drosophila parkin causes selective degeneration of a dopaminergic neuron cluster that is functionally homologous to the substantia nigra. By comparing observations in these to similar non-degenerating neurons, we may begin to understand mechanisms by which parkin loss of function causes selective degeneration. Using mitochondrially targeted redox-sensitive GFP2 fused with redox enzymes, we observed a sustained increased mitochondrial hydrogen peroxide levels in vulnerable dopaminergic neurons of parkin-null flies. Only transient increases in hydrogen peroxide were observed in similar but non-degenerating neurons. Glutathione redox equilibrium is preferentially dysregulated in vulnerable neuron mitochondria. To shed light on whether dysregulated glutathione redox equilibrium primarily contributes to oxidative stress, we supplemented food with folic acid, which can increase cysteine and glutathione levels. Folic acid improved survival, climbing, and transiently decreased hydrogen peroxide and glutathione redox equilibrium but did not mitigate whole-brain oxidative stress. MDPI 2022-10-20 /pmc/articles/PMC9598960/ /pubmed/36290790 http://dx.doi.org/10.3390/antiox11102068 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Houlihan, Katherine L.
Keoseyan, Petros P.
Juba, Amber N.
Margaryan, Tigran
Voss, Max E.
Babaoghli, Alexander M.
Norris, Justin M.
Adrian, Greg J.
Tovmasyan, Artak
Buhlman, Lori M.
Folic Acid Improves Parkin-Null Drosophila Phenotypes and Transiently Reduces Vulnerable Dopaminergic Neuron Mitochondrial Hydrogen Peroxide Levels and Glutathione Redox Equilibrium
title Folic Acid Improves Parkin-Null Drosophila Phenotypes and Transiently Reduces Vulnerable Dopaminergic Neuron Mitochondrial Hydrogen Peroxide Levels and Glutathione Redox Equilibrium
title_full Folic Acid Improves Parkin-Null Drosophila Phenotypes and Transiently Reduces Vulnerable Dopaminergic Neuron Mitochondrial Hydrogen Peroxide Levels and Glutathione Redox Equilibrium
title_fullStr Folic Acid Improves Parkin-Null Drosophila Phenotypes and Transiently Reduces Vulnerable Dopaminergic Neuron Mitochondrial Hydrogen Peroxide Levels and Glutathione Redox Equilibrium
title_full_unstemmed Folic Acid Improves Parkin-Null Drosophila Phenotypes and Transiently Reduces Vulnerable Dopaminergic Neuron Mitochondrial Hydrogen Peroxide Levels and Glutathione Redox Equilibrium
title_short Folic Acid Improves Parkin-Null Drosophila Phenotypes and Transiently Reduces Vulnerable Dopaminergic Neuron Mitochondrial Hydrogen Peroxide Levels and Glutathione Redox Equilibrium
title_sort folic acid improves parkin-null drosophila phenotypes and transiently reduces vulnerable dopaminergic neuron mitochondrial hydrogen peroxide levels and glutathione redox equilibrium
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9598960/
https://www.ncbi.nlm.nih.gov/pubmed/36290790
http://dx.doi.org/10.3390/antiox11102068
work_keys_str_mv AT houlihankatherinel folicacidimprovesparkinnulldrosophilaphenotypesandtransientlyreducesvulnerabledopaminergicneuronmitochondrialhydrogenperoxidelevelsandglutathioneredoxequilibrium
AT keoseyanpetrosp folicacidimprovesparkinnulldrosophilaphenotypesandtransientlyreducesvulnerabledopaminergicneuronmitochondrialhydrogenperoxidelevelsandglutathioneredoxequilibrium
AT jubaambern folicacidimprovesparkinnulldrosophilaphenotypesandtransientlyreducesvulnerabledopaminergicneuronmitochondrialhydrogenperoxidelevelsandglutathioneredoxequilibrium
AT margaryantigran folicacidimprovesparkinnulldrosophilaphenotypesandtransientlyreducesvulnerabledopaminergicneuronmitochondrialhydrogenperoxidelevelsandglutathioneredoxequilibrium
AT vossmaxe folicacidimprovesparkinnulldrosophilaphenotypesandtransientlyreducesvulnerabledopaminergicneuronmitochondrialhydrogenperoxidelevelsandglutathioneredoxequilibrium
AT babaoghlialexanderm folicacidimprovesparkinnulldrosophilaphenotypesandtransientlyreducesvulnerabledopaminergicneuronmitochondrialhydrogenperoxidelevelsandglutathioneredoxequilibrium
AT norrisjustinm folicacidimprovesparkinnulldrosophilaphenotypesandtransientlyreducesvulnerabledopaminergicneuronmitochondrialhydrogenperoxidelevelsandglutathioneredoxequilibrium
AT adriangregj folicacidimprovesparkinnulldrosophilaphenotypesandtransientlyreducesvulnerabledopaminergicneuronmitochondrialhydrogenperoxidelevelsandglutathioneredoxequilibrium
AT tovmasyanartak folicacidimprovesparkinnulldrosophilaphenotypesandtransientlyreducesvulnerabledopaminergicneuronmitochondrialhydrogenperoxidelevelsandglutathioneredoxequilibrium
AT buhlmanlorim folicacidimprovesparkinnulldrosophilaphenotypesandtransientlyreducesvulnerabledopaminergicneuronmitochondrialhydrogenperoxidelevelsandglutathioneredoxequilibrium