Cargando…

A Different Exosome Secretion Pattern Characterizes Patient-Derived Colorectal Cancer Multicellular Spheroids and Their Mouse Xenografts

SIMPLE SUMMARY: Exosomes have a role in tumorigenesis and metastatic dissemination, their material content and size being associated with poor prognosis of colorectal cancer (CRC). Our work aims to investigate their secretion patterns in CRC stem cells in patient-derived multicellular tumor spheroid...

Descripción completa

Detalles Bibliográficos
Autores principales: Relucenti, Michela, Francescangeli, Federica, De Angelis, Maria Laura, D’Andrea, Vito, Miglietta, Selenia, Donfrancesco, Orlando, Li, Xiaobo, Chen, Rui, Zeuner, Ann, Familiari, Giuseppe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9599039/
https://www.ncbi.nlm.nih.gov/pubmed/36290331
http://dx.doi.org/10.3390/biology11101427
Descripción
Sumario:SIMPLE SUMMARY: Exosomes have a role in tumorigenesis and metastatic dissemination, their material content and size being associated with poor prognosis of colorectal cancer (CRC). Our work aims to investigate their secretion patterns in CRC stem cells in patient-derived multicellular tumor spheroids (MTSs) and their mouse xenografts, to unveil possible differences in terms of exosome amount, size, and secretion site between in vitro and in vivo models. Our results show that MTSs’ exosome secretion pattern depends on their structural complexity: few-layer spheroids show a lesser exosome secretion, limited to the apical domain of cancer cells; secretion increases in multilayered spheroids and is visible from apical and basolateral cancer cells domains. In xenograft models, exosome secretion occurs from all cancer cell domains, and it is quantitatively greater than that observed in spheroids. The influence of the surrounding environment of non-tumor cells may account for the difference in exosome secretion patterns between spheroids and xenografts. ABSTRACT: Up-to-date in vitro and in vivo preclinical models expressing the patient-specific cancer lineage responsible for CRC and its metastatic behavior and responsiveness to therapy are needed. Exosomes’ role in tumorigenesis and the metastatic process was demonstrated, and the material content and size of the exosomes are associated with a poor prognosis of CRC. Exosomes are generally imagined after their recovery from blood serum as isolated entities, and our work aims to investigate them “in situ” in their native environment by scanning and transmission electron microscopy to understand their secretion modalities. We studied CRC stem cells in patient-derived multicellular tumor spheroids (MTSs) and in their mouse xenograft to find possible differences in terms of exosome amount, size, and secretion site between in vitro and in vivo models. We observed that MTSs’ exosome secretion patterns depend on their structural complexity: few-layer MTSs show a lesser exosome secretion, limited to the apical domain of cancer cells, secretion increases in multilayered MTSs, and it develops from apical and basolateral cancer cells domains. In xenograft models, exosome secretion occurs from all cancer cell domains, and it is quantitatively greater than that observed in MTSs. This difference in exosome secretion pattern between MTSs and xenografts may be due to the influence of surrounding non-tumor cells.