Cargando…
Neuron Protection by EDTA May Explain the Successful Outcomes of Toxic Metal Chelation Therapy in Neurodegenerative Diseases
Many mechanisms have been related to the etiopathogenesis of neurodegenerative diseases (NDs) such as multiple sclerosis, amyotrophic lateral sclerosis, Parkinson’s disease, and Alzheimer’s disease. In this context, the detrimental role of environmental agents has also been highlighted. Studies focu...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9599085/ https://www.ncbi.nlm.nih.gov/pubmed/36289738 http://dx.doi.org/10.3390/biomedicines10102476 |
Sumario: | Many mechanisms have been related to the etiopathogenesis of neurodegenerative diseases (NDs) such as multiple sclerosis, amyotrophic lateral sclerosis, Parkinson’s disease, and Alzheimer’s disease. In this context, the detrimental role of environmental agents has also been highlighted. Studies focused on the role of toxic metals in the pathogenesis of ND demonstrate the efficacy of treatment with the chelating agent calcium disodium ethylenediaminetetraacetic acid (EDTA) in eliminating toxic metal burden in all ND patients, improving their symptoms. Lead, cadmium, aluminum, nickel, and mercury were the most important toxic metals detected in these patients. Here, I provide an updated review on the damage to neurons promoted by toxic metals and on the impact of EDTA chelation therapy in ND patients, along with the clinical description of a representative case. |
---|