Cargando…

Cr-MOF-Based Electrochemical Sensor for the Detection of P-Nitrophenol

Cr-MOF nanoparticles were synthesized by a simple hydrothermal method, and their morphology and structure were characterized by SEM, TEM, and XRD techniques. The Cr-MOF modified glassy carbon electrode (Cr-MOF/GCE) was well constructed and served as an efficient electrochemical sensor for the detect...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Chao, Pan, Ping, Huang, Haiping, Liu, Hongtao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9599216/
https://www.ncbi.nlm.nih.gov/pubmed/36290950
http://dx.doi.org/10.3390/bios12100813
Descripción
Sumario:Cr-MOF nanoparticles were synthesized by a simple hydrothermal method, and their morphology and structure were characterized by SEM, TEM, and XRD techniques. The Cr-MOF modified glassy carbon electrode (Cr-MOF/GCE) was well constructed and served as an efficient electrochemical sensor for the detection of p-nitrophenol (p-NP). It was found that the Cr-MOF nanoparticles had significant electrocatalytic activity toward the reduction of p-NP. The Cr-MOF-based electrochemical sensor exhibited a low detection limit of 0.7 μM for p-NP in a wide range of 2~500 μM and could maintain excellent detection stability in a series of interfering media. The electrochemical sensor was also practically applied to detect p-NP in a local river and confirmed its validity, showing potential application prospects.