Cargando…
Modeling Cognitive Load as a Self-Supervised Brain Rate with Electroencephalography and Deep Learning
The principal reason for measuring mental workload is to quantify the cognitive cost of performing tasks to predict human performance. Unfortunately, a method for assessing mental workload that has general applicability does not exist yet. This is due to the abundance of intuitions and several opera...
Autor principal: | Longo, Luca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9599448/ https://www.ncbi.nlm.nih.gov/pubmed/36291349 http://dx.doi.org/10.3390/brainsci12101416 |
Ejemplares similares
-
Preoperative Electroencephalography‐Based Machine Learning Predicts Cognitive Deterioration After Subthalamic Deep Brain Stimulation
por: Geraedts, Victor J., et al.
Publicado: (2021) -
Self-Supervised Deep Learning for Model Correction in the Computational Crystallography Toolbox
por: Ganapati, Vidya, et al.
Publicado: (2023) -
Deep semi-supervised learning for brain tumor classification
por: Ge, Chenjie, et al.
Publicado: (2020) -
Weak supervision as an efficient approach for automated seizure detection in electroencephalography
por: Saab, Khaled, et al.
Publicado: (2020) -
Self-supervised deep learning for highly efficient spatial immunophenotyping
por: Zhang, Hanyun, et al.
Publicado: (2023)