Cargando…
Measurement Accuracy and Repeatability of RECIST-Defined Pulmonary Lesions and Lymph Nodes in Ultra-Low-Dose CT Based on Deep Learning Image Reconstruction
SIMPLE SUMMARY: This study compared the measured diameters of Response Evaluation Criteria in Solid Tumors (RECIST)-defined chest target lesions and lymph nodes between deep learning image reconstruction (DLIR)-based ultra-low-dose CT (ULDCT) and contrast-enhanced CT and found that the measured diam...
Autores principales: | Zhao, Keke, Jiang, Beibei, Zhang, Shuai, Zhang, Lu, Zhang, Lin, Feng, Yan, Li, Jianying, Zhang, Yaping, Xie, Xueqian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9599467/ https://www.ncbi.nlm.nih.gov/pubmed/36291800 http://dx.doi.org/10.3390/cancers14205016 |
Ejemplares similares
-
Imaging beyond RECIST: CT and MRI in molecular therapies
por: Diederich, Stefan
Publicado: (2012) -
RECIST rules
por: Sohaib, Aslam
Publicado: (2012) -
Response Evaluation and Survival Prediction Following PD‐1 Inhibitor in Patients With Advanced Hepatocellular Carcinoma: Comparison of the RECIST 1.1, iRECIST, and mRECIST Criteria
por: Zhou, Meng, et al.
Publicado: (2021) -
RECIST revised: implications for the radiologist. A review article on the modified RECIST guideline
por: van Persijn van Meerten, Els L., et al.
Publicado: (2009) -
RECIST 1.1 and lesion selection: How to deal with ambiguity at baseline?
por: Iannessi, Antoine, et al.
Publicado: (2021)