Cargando…
Metabolomic and Lipidomic Profiling of Gliomas—A New Direction in Personalized Therapies
SIMPLE SUMMARY: Gliomas comprise an extremely diverse category of brain tumors that are difficult to diagnose and treat. As a result, scientists continue to search for new treatment solutions, with personalized medicine having emerged as a particularly promising therapeutic approach. Metabolomics an...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9599495/ https://www.ncbi.nlm.nih.gov/pubmed/36291824 http://dx.doi.org/10.3390/cancers14205041 |
Sumario: | SIMPLE SUMMARY: Gliomas comprise an extremely diverse category of brain tumors that are difficult to diagnose and treat. As a result, scientists continue to search for new treatment solutions, with personalized medicine having emerged as a particularly promising therapeutic approach. Metabolomics and its sub-discipline, lipidomics, are two scientific fields well-suited to support this search. Metabolomics focuses on the physicochemical changes in the metabolome, which include all of the small endogenous and exogenous compounds in a biological system. As such, metabolic analysis can help identify important biochemical pathways which could be the targets for new therapeutic approaches. This review examines the new directions of personalized therapies for gliomas and how metabolomic and lipidomic analysis assists in developing these strategies and monitoring their effectiveness. The discussion of new strategies is preceded by a brief overview of the current “gold standard” treatment for gliomas and the obstacles that new treatment approaches must overcome. ABSTRACT: In addition to being the most common primary brain tumor, gliomas are also among the most difficult to diagnose and treat. At present, the “gold standard” in glioma treatment entails the surgical resection of the largest possible portion of the tumor, followed by temozolomide therapy and radiation. However, this approach does not always yield the desired results. Additionally, the ability to cross the blood-brain barrier remains a major challenge for new potential drugs. Thus, researchers continue to search for targeted therapies that can be individualized based on the specific characteristics of each case. Metabolic and lipidomic research may represent two of the best ways to achieve this goal, as they enable detailed insights into the changes in the profile of small molecules in a biological system/specimen. This article reviews the new approaches to glioma therapy based on the analysis of alterations to biochemical pathways, and it provides an overview of the clinical results that may support personalized therapies in the future. |
---|