Cargando…
Molecular Regulation of Heme Oxygenase-1 Expression by E2F Transcription Factor 2 in Lung Fibroblast Cells: Relevance to Idiopathic Pulmonary Fibrosis
Idiopathic pulmonary fibrosis (IPF) is a fatal chronic lung disease. Heme oxygenase-1 (HMOX1/HO-1) is an enzyme that catalyzes the degradation of heme. The role of HO-1 in the pathogenesis of IPF has been studied; however, the molecular regulation of HO-1 and its role in IPF are still unclear. In th...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9599643/ https://www.ncbi.nlm.nih.gov/pubmed/36291740 http://dx.doi.org/10.3390/biom12101531 |
Sumario: | Idiopathic pulmonary fibrosis (IPF) is a fatal chronic lung disease. Heme oxygenase-1 (HMOX1/HO-1) is an enzyme that catalyzes the degradation of heme. The role of HO-1 in the pathogenesis of IPF has been studied; however, the molecular regulation of HO-1 and its role in IPF are still unclear. In this study, we found that HO-1 protein levels significantly increased in lung myofibroblasts in IPF patients and in lungs in a murine model of bleomycin-induced lung fibrosis. In addition, we observed that administration of a E2F transcription factor inhibitor elevated HO-1 mRNA and protein levels in lung fibroblasts. Downregulation of E2F2 by siRNA transfection increased HO-1 mRNA and protein levels, while overexpression of E2F2 reduced HO-1 levels. However, overexpression of E2F2 did not alter hemin-induced HO-1 protein levels. Furthermore, modulation of HO-1 levels regulated TGF-β1-induced myofibroblast differentiation without altering the phosphorylation of Smad2/3 in lung fibroblast cells. Moreover, the phosphorylation of protein kinase B (Akt) was significantly upregulated in HO-1-depleted lung fibroblast cells. In summary, this study demonstrated that E2F2 regulates the baseline expression of HO-1, but has no effect on modulating HO-1 expression by hemin. Finally, elevated HO-1 expression contributes to the TGF-β1-induced lung myofibroblast differentiation through the activation of the serine/threonine kinase AKT pathway. Overall, our findings suggest that targeting E2F2/HO-1 might be a new therapeutic strategy to treat fibrotic diseases such as IPF. |
---|