Cargando…
Drug-Disease Association Prediction Using Heterogeneous Networks for Computational Drug Repositioning
Drug repositioning, which involves the identification of new therapeutic indications for approved drugs, considerably reduces the time and cost of developing new drugs. Recent computational drug repositioning methods use heterogeneous networks to identify drug–disease associations. This review revea...
Autores principales: | Kim, Yoonbee, Jung, Yi-Sue, Park, Jong-Hoon, Kim, Seon-Jun, Cho, Young-Rae |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9599692/ https://www.ncbi.nlm.nih.gov/pubmed/36291706 http://dx.doi.org/10.3390/biom12101497 |
Ejemplares similares
-
Predicting Drug–Gene–Disease Associations by Tensor Decomposition for Network-Based Computational Drug Repositioning
por: Kim, Yoonbee, et al.
Publicado: (2023) -
Network-Based Approaches for Disease-Gene Association Prediction Using Protein-Protein Interaction Networks
por: Kim, Yoonbee, et al.
Publicado: (2022) -
Computational drug repositioning through heterogeneous network clustering
por: Wu, Chao, et al.
Publicado: (2013) -
Entropy-Based Graph Clustering of PPI Networks for Predicting Overlapping Functional Modules of Proteins
por: Jeong, Hoyeon, et al.
Publicado: (2021) -
A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information
por: Luo, Yunan, et al.
Publicado: (2017)