Cargando…
Multisensory Integration in Caenorhabditis elegans in Comparison to Mammals
Multisensory integration refers to sensory inputs from different sensory modalities being processed simultaneously to produce a unitary output. Surrounded by stimuli from multiple modalities, animals utilize multisensory integration to form a coherent and robust representation of the complex environ...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9599712/ https://www.ncbi.nlm.nih.gov/pubmed/36291302 http://dx.doi.org/10.3390/brainsci12101368 |
Sumario: | Multisensory integration refers to sensory inputs from different sensory modalities being processed simultaneously to produce a unitary output. Surrounded by stimuli from multiple modalities, animals utilize multisensory integration to form a coherent and robust representation of the complex environment. Even though multisensory integration is fundamentally essential for animal life, our understanding of the underlying mechanisms, especially at the molecular, synaptic and circuit levels, remains poorly understood. The study of sensory perception in Caenorhabditis elegans has begun to fill this gap. We have gained a considerable amount of insight into the general principles of sensory neurobiology owing to C. elegans’ highly sensitive perceptions, relatively simple nervous system, ample genetic tools and completely mapped neural connectome. Many interesting paradigms of multisensory integration have been characterized in C. elegans, for which input convergence occurs at the sensory neuron or the interneuron level. In this narrative review, we describe some representative cases of multisensory integration in C. elegans, summarize the underlying mechanisms and compare them with those in mammalian systems. Despite the differences, we believe C. elegans is able to provide unique insights into how processing and integrating multisensory inputs can generate flexible and adaptive behaviors. With the emergence of whole brain imaging, the ability of C. elegans to monitor nearly the entire nervous system may be crucial for understanding the function of the brain as a whole. |
---|