Cargando…
Exploring Computational Data Amplification and Imputation for the Discovery of Type 1 Diabetes (T1D) Biomarkers from Limited Human Datasets
Background: Type 1 diabetes (T1D) is a devastating disease with serious health complications. Early T1D biomarkers that could enable timely detection and prevention before the onset of clinical symptoms are paramount but currently unavailable. Despite their promise, omics approaches have so far fail...
Autores principales: | Alcazar, Oscar, Ogihara, Mitsunori, Ren, Gang, Buchwald, Peter, Abdulreda, Midhat H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9599756/ https://www.ncbi.nlm.nih.gov/pubmed/36291653 http://dx.doi.org/10.3390/biom12101444 |
Ejemplares similares
-
Effect of Arginase-1 Inhibition on the Incidence of Autoimmune Diabetes in NOD Mice
por: Hernandez, Luis F, et al.
Publicado: (2018) -
Parallel Multi-Omics in High-Risk Subjects for the Identification of Integrated Biomarker Signatures of Type 1 Diabetes
por: Alcazar, Oscar, et al.
Publicado: (2021) -
Feasibility of Localized Metabolomics in the Study of Pancreatic Islets and Diabetes
por: Alcazar, Oscar, et al.
Publicado: (2019) -
NOD Mice—Good Model for T1D but Not Without Limitations
por: Aldrich, Virginia R., et al.
Publicado: (2020) -
Challenges in stem cell-derived islet replacement therapy can
be overcome
por: Abdulreda, Midhat H., et al.
Publicado: (2021)