Cargando…
Resting-State Functional MRI Adaptation with Attention Graph Convolution Network for Brain Disorder Identification
Multi-site resting-state functional magnetic resonance imaging (rs-fMRI) data can facilitate learning-based approaches to train reliable models on more data. However, significant data heterogeneity between imaging sites, caused by different scanners or protocols, can negatively impact the generaliza...
Autores principales: | Chu, Ying, Ren, Haonan, Qiao, Lishan, Liu, Mingxia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9599902/ https://www.ncbi.nlm.nih.gov/pubmed/36291346 http://dx.doi.org/10.3390/brainsci12101413 |
Ejemplares similares
-
Unsupervised contrastive graph learning for resting‐state functional MRI analysis and brain disorder detection
por: Wang, Xiaochuan, et al.
Publicado: (2023) -
Multi-Scale Graph Representation Learning for Autism Identification With Functional MRI
por: Chu, Ying, et al.
Publicado: (2022) -
Adaptive Attention Memory Graph Convolutional Networks for Skeleton-Based Action Recognition
por: Liu, Di, et al.
Publicado: (2021) -
DeepEZ: A Graph Convolutional Network for Automated Epileptogenic Zone Localization From Resting-State fMRI Connectivity
por: Nandakumar, Naresh, et al.
Publicado: (2023) -
Graph-Based Network Analysis of Resting-State Functional MRI
por: Wang, Jinhui, et al.
Publicado: (2010)