Cargando…
Deep Learning Models for Automated Assessment of Breast Density Using Multiple Mammographic Image Types
SIMPLE SUMMARY: The DL model predictions in automated breast density assessment were independent of the imaging technologies, moderately or substantially agreed with the clinical reader density values, and had improved performance as compared to inclusion of commercial software values. ABSTRACT: Rec...
Autores principales: | Rigaud, Bastien, Weaver, Olena O., Dennison, Jennifer B., Awais, Muhammad, Anderson, Brian M., Chiang, Ting-Yu D., Yang, Wei T., Leung, Jessica W. T., Hanash, Samir M., Brock, Kristy K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9599904/ https://www.ncbi.nlm.nih.gov/pubmed/36291787 http://dx.doi.org/10.3390/cancers14205003 |
Ejemplares similares
-
Mammographic density. Measurement of mammographic density
por: Yaffe, Martin J
Publicado: (2008) -
Mammographic Density Estimation with Automated Volumetric Breast Density Measurement
por: Ko, Su Yeon, et al.
Publicado: (2014) -
Mammographic density
por: Boyd, Norman F, et al.
Publicado: (2009) -
Automated percent mammographic density, mammographic texture variation, and risk of breast cancer: a nested case-control study
por: Warner, Erica T., et al.
Publicado: (2021) -
Automated segmentation of colorectal liver metastasis and liver ablation on contrast-enhanced CT images
por: Anderson, Brian M., et al.
Publicado: (2022)