Cargando…
Epileptic Seizure Detection Based on Variational Mode Decomposition and Deep Forest Using EEG Signals
Electroencephalography (EEG) records the electrical activity of the brain, which is an important tool for the automatic detection of epileptic seizures. It is certainly a very heavy burden to only recognize EEG epilepsy manually, so the method of computer-assisted treatment is of great importance. T...
Autores principales: | Liu, Xiang, Wang, Juan, Shang, Junliang, Liu, Jinxing, Dai, Lingyun, Yuan, Shasha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9599930/ https://www.ncbi.nlm.nih.gov/pubmed/36291210 http://dx.doi.org/10.3390/brainsci12101275 |
Ejemplares similares
-
Epileptic seizure prediction using successive variational mode decomposition and transformers deep learning network
por: Wu, Xiao, et al.
Publicado: (2022) -
Detecting Epileptic Seizures in EEG Signals with Complementary Ensemble Empirical Mode Decomposition and Extreme Gradient Boosting
por: Wu, Jiang, et al.
Publicado: (2020) -
Epileptic seizure classifications using empirical mode decomposition and its derivative
por: Karabiber Cura, Ozlem, et al.
Publicado: (2020) -
Capturing the power of seizures: an empirical mode decomposition analysis of epileptic activity in the mouse hippocampus
por: Molnár, László, et al.
Publicado: (2023) -
Epileptic Seizure Detection Based on EEG Signals and CNN
por: Zhou, Mengni, et al.
Publicado: (2018)