Cargando…
Enhancement of (18)F-Fluorodeoxyglucose PET Image Quality by Deep-Learning-Based Image Reconstruction Using Advanced Intelligent Clear-IQ Engine in Semiconductor-Based PET/CT Scanners
Deep learning (DL) image quality improvement has been studied for application to (18)F-fluorodeoxyglucose positron emission tomography/computed tomography ((18)F-FDG PET/CT). It is unclear, however, whether DL can increase the quality of images obtained with semiconductor-based PET/CT scanners. This...
Autores principales: | Yamagiwa, Ken, Tsuchiya, Junichi, Yokoyama, Kota, Watanabe, Ryosuke, Kimura, Koichiro, Kishino, Mitsuhiro, Tateishi, Ukihide |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9599974/ https://www.ncbi.nlm.nih.gov/pubmed/36292189 http://dx.doi.org/10.3390/diagnostics12102500 |
Ejemplares similares
-
Deep learning-based image quality improvement of (18)F-fluorodeoxyglucose positron emission tomography: a retrospective observational study
por: Tsuchiya, Junichi, et al.
Publicado: (2021) -
Image quality and quantification accuracy dependence on patient body mass in (89)Zr PET/CT imaging
por: Tateishi, Ukihide, et al.
Publicado: (2021) -
Additional Value of [(18)F]FDG PET or PET/CT for Response Assessment of Patients with Gastrointestinal Stromal Tumor Undergoing Molecular Targeted Therapy: A Meta-Analysis
por: Yokoyama, Kota, et al.
Publicado: (2021) -
Comparison of [(18)F]FDG PET/CT and MRI for Treatment Response Assessment in Multiple Myeloma: A Meta-Analysis
por: Yokoyama, Kota, et al.
Publicado: (2021) -
PET NEMA IQ Phantom dataset: image reconstruction settings for quantitative PET imaging
por: Vosoughi, Habibeh, et al.
Publicado: (2021)