Cargando…

All-natural gelatin-based bioorthogonal catalysts for efficient eradication of bacterial biofilms

Bioorthogonal catalysis mediated by transition metal catalysts (TMCs) presents a versatile tool for in situ generation of diagnostic and therapeutic agents. The use of ‘naked’ TMCs in complex media faces numerous obstacles arising from catalyst deactivation and poor water solubility. The integration...

Descripción completa

Detalles Bibliográficos
Autores principales: Nabawy, Ahmed, Huang, Rui, Luther, David C., Zhang, Xianzhi, Li, Cheng-Hsuan, Makabenta, Jessa Marie, Rotello, Vincent M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9600305/
https://www.ncbi.nlm.nih.gov/pubmed/36349111
http://dx.doi.org/10.1039/d2sc03895a
_version_ 1784816809000566784
author Nabawy, Ahmed
Huang, Rui
Luther, David C.
Zhang, Xianzhi
Li, Cheng-Hsuan
Makabenta, Jessa Marie
Rotello, Vincent M.
author_facet Nabawy, Ahmed
Huang, Rui
Luther, David C.
Zhang, Xianzhi
Li, Cheng-Hsuan
Makabenta, Jessa Marie
Rotello, Vincent M.
author_sort Nabawy, Ahmed
collection PubMed
description Bioorthogonal catalysis mediated by transition metal catalysts (TMCs) presents a versatile tool for in situ generation of diagnostic and therapeutic agents. The use of ‘naked’ TMCs in complex media faces numerous obstacles arising from catalyst deactivation and poor water solubility. The integration of TMCs into engineered inorganic scaffolds provides ‘nanozymes’ with enhanced water solubility and stability, offering potential applications in biomedicine. However, the clinical translation of nanozymes remains challenging due to their side effects including the genotoxicity of heavy metal catalysts and unwanted tissue accumulation of the non-biodegradable nanomaterials used as scaffolds. We report here the creation of an all-natural catalytic “polyzyme”, comprised of gelatin–eugenol nanoemulsion engineered to encapsulate catalytically active hemin, a non-toxic iron porphyrin. These polyzymes penetrate biofilms and eradicate mature bacterial biofilms through bioorthogonal activation of a pro-antibiotic, providing a highly biocompatible platform for antimicrobial therapeutics.
format Online
Article
Text
id pubmed-9600305
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-96003052022-11-07 All-natural gelatin-based bioorthogonal catalysts for efficient eradication of bacterial biofilms Nabawy, Ahmed Huang, Rui Luther, David C. Zhang, Xianzhi Li, Cheng-Hsuan Makabenta, Jessa Marie Rotello, Vincent M. Chem Sci Chemistry Bioorthogonal catalysis mediated by transition metal catalysts (TMCs) presents a versatile tool for in situ generation of diagnostic and therapeutic agents. The use of ‘naked’ TMCs in complex media faces numerous obstacles arising from catalyst deactivation and poor water solubility. The integration of TMCs into engineered inorganic scaffolds provides ‘nanozymes’ with enhanced water solubility and stability, offering potential applications in biomedicine. However, the clinical translation of nanozymes remains challenging due to their side effects including the genotoxicity of heavy metal catalysts and unwanted tissue accumulation of the non-biodegradable nanomaterials used as scaffolds. We report here the creation of an all-natural catalytic “polyzyme”, comprised of gelatin–eugenol nanoemulsion engineered to encapsulate catalytically active hemin, a non-toxic iron porphyrin. These polyzymes penetrate biofilms and eradicate mature bacterial biofilms through bioorthogonal activation of a pro-antibiotic, providing a highly biocompatible platform for antimicrobial therapeutics. The Royal Society of Chemistry 2022-10-07 /pmc/articles/PMC9600305/ /pubmed/36349111 http://dx.doi.org/10.1039/d2sc03895a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Nabawy, Ahmed
Huang, Rui
Luther, David C.
Zhang, Xianzhi
Li, Cheng-Hsuan
Makabenta, Jessa Marie
Rotello, Vincent M.
All-natural gelatin-based bioorthogonal catalysts for efficient eradication of bacterial biofilms
title All-natural gelatin-based bioorthogonal catalysts for efficient eradication of bacterial biofilms
title_full All-natural gelatin-based bioorthogonal catalysts for efficient eradication of bacterial biofilms
title_fullStr All-natural gelatin-based bioorthogonal catalysts for efficient eradication of bacterial biofilms
title_full_unstemmed All-natural gelatin-based bioorthogonal catalysts for efficient eradication of bacterial biofilms
title_short All-natural gelatin-based bioorthogonal catalysts for efficient eradication of bacterial biofilms
title_sort all-natural gelatin-based bioorthogonal catalysts for efficient eradication of bacterial biofilms
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9600305/
https://www.ncbi.nlm.nih.gov/pubmed/36349111
http://dx.doi.org/10.1039/d2sc03895a
work_keys_str_mv AT nabawyahmed allnaturalgelatinbasedbioorthogonalcatalystsforefficienteradicationofbacterialbiofilms
AT huangrui allnaturalgelatinbasedbioorthogonalcatalystsforefficienteradicationofbacterialbiofilms
AT lutherdavidc allnaturalgelatinbasedbioorthogonalcatalystsforefficienteradicationofbacterialbiofilms
AT zhangxianzhi allnaturalgelatinbasedbioorthogonalcatalystsforefficienteradicationofbacterialbiofilms
AT lichenghsuan allnaturalgelatinbasedbioorthogonalcatalystsforefficienteradicationofbacterialbiofilms
AT makabentajessamarie allnaturalgelatinbasedbioorthogonalcatalystsforefficienteradicationofbacterialbiofilms
AT rotellovincentm allnaturalgelatinbasedbioorthogonalcatalystsforefficienteradicationofbacterialbiofilms