Cargando…

[2 + 2] Cycloaddition of phosphaalkenes as a key step for the reductive coupling of diaryl ketones to tetraaryl olefins

Procedures for the reductive coupling of carbonyl compounds to alkenes in the literature rely either on a radical coupling strategy, as in the McMurry coupling, or ionic pathways, sometimes catalysed by transition metals, as in more contemporary contributions. Herein, we present the first example of...

Descripción completa

Detalles Bibliográficos
Autores principales: Arkhypchuk, Anna I., D'Imperio, Nicolas, Wells, Jordann A. L., Ott, Sascha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9600306/
https://www.ncbi.nlm.nih.gov/pubmed/36349090
http://dx.doi.org/10.1039/d2sc03073j
Descripción
Sumario:Procedures for the reductive coupling of carbonyl compounds to alkenes in the literature rely either on a radical coupling strategy, as in the McMurry coupling, or ionic pathways, sometimes catalysed by transition metals, as in more contemporary contributions. Herein, we present the first example of a third strategy that is based on the [2 + 2] cycloaddition of ketone-derived phosphaalkenes. Removal of P-trimethylsilyl groups at the intermediary 1,2-diphosphetane dimer results in its collapse and concomitant release of the tetraaryl-substituted alkene. In fact, the presented strategy is the only alternative to the McMurry coupling in the literature that allows tetraaryl alkene formation from diaryl ketones, with yields as high as 85%. The power of the methodology is illustrated in the reaction of tethered bis-benzophenones which engage in intramolecular reductive carbonyl couplings to form unusual macrocycles without the need for high dilution conditions or templating.