Cargando…
Bacteroides thetaiotaomicron Outer Membrane Vesicles Modulate Virulence of Shigella flexneri
The role of the gut microbiota in the pathogenesis of Shigella flexneri remains largely unknown. To understand the impact of the gut microbiota on S. flexneri virulence, we examined the effect of interspecies interactions with Bacteroides thetaiotaomicron, a prominent member of the gut microbiota, o...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9600379/ https://www.ncbi.nlm.nih.gov/pubmed/36102517 http://dx.doi.org/10.1128/mbio.02360-22 |
Sumario: | The role of the gut microbiota in the pathogenesis of Shigella flexneri remains largely unknown. To understand the impact of the gut microbiota on S. flexneri virulence, we examined the effect of interspecies interactions with Bacteroides thetaiotaomicron, a prominent member of the gut microbiota, on S. flexneri invasion. When grown in B. thetaiotaomicron-conditioned medium, S. flexneri showed reduced invasion of human epithelial cells. This decrease in invasiveness of S. flexneri resulted from a reduction in the level of the S. flexneri master virulence regulator VirF. Reduction of VirF corresponded with a decrease in expression of a secondary virulence regulator, virB, as well as expression of S. flexneri virulence genes required for invasion, intracellular motility, and spread. Repression of S. flexneri virulence factors by B. thetaiotaomicron-conditioned medium was not caused by either a secreted metabolite or secreted protein but rather was due to the presence of B. thetaiotaomicron outer membrane vesicles (OMVs) in the conditioned medium. The addition of purified B. thetaiotaomicron OMVs to S. flexneri growth medium recapitulated the inhibitory effects of B. thetaiotaomicron-conditioned medium on invasion, virulence gene expression, and virulence protein levels. Total lipids extracted from either B. thetaiotaomicron cells or B. thetaiotaomicron OMVs also recapitulated the effects of B. thetaiotaomicron-conditioned medium on expression of the S. flexneri virulence factor IpaC, indicating that B. thetaiotaomicron OMV lipids, rather than a cargo contained in the vesicles, are the active factor responsible for the inhibition of S. flexneri virulence. |
---|