Cargando…
The METTL3 RNA Methyltransferase Regulates Transcriptional Networks in Prostate Cancer
SIMPLE SUMMARY: Prostate cancer is driven by androgen receptor-regulated transcription and is a leading cause of cancer deaths. For this reason, androgen deprivation therapies are commonly used to treat advanced prostate cancer. These treatments are often effective for short durations before the eme...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9600477/ https://www.ncbi.nlm.nih.gov/pubmed/36291932 http://dx.doi.org/10.3390/cancers14205148 |
Sumario: | SIMPLE SUMMARY: Prostate cancer is driven by androgen receptor-regulated transcription and is a leading cause of cancer deaths. For this reason, androgen deprivation therapies are commonly used to treat advanced prostate cancer. These treatments are often effective for short durations before the emergence of treatment resistance and disease progression to castrate resistant prostate cancer or neuroendocrine-like disease. The aim of this study was to address whether new therapies targeting the epitranscriptome may suppress androgen signalling and thus represent a novel approach to prostate cancer treatment. ABSTRACT: Prostate cancer (PCa) is a leading cause of cancer-related deaths and is driven by aberrant androgen receptor (AR) signalling. For this reason, androgen deprivation therapies (ADTs) that suppress androgen-induced PCa progression either by preventing androgen biosynthesis or via AR signalling inhibition (ARSi) are common treatments. The N6-methyladenosine (m6A) RNA modification is involved in regulating mRNA expression, translation, and alternative splicing, and through these mechanisms has been implicated in cancer development and progression. RNA-m6A is dynamically regulated by the METTL3 RNA methyltransferase complex and the FTO and ALKBH5 demethylases. While there is evidence supporting a role for aberrant METTL3 in many cancer types, including localised PCa, the wider contribution of METTL3, and by inference m6A, in androgen signalling in PCa remains poorly understood. Therefore, the aim of this study was to investigate the expression of METTL3 in PCa patients and study the clinical and functional relevance of METTL3 in PCa. It was found that METTL3 is aberrantly expressed in PCa patient samples and that siRNA-mediated METTL3 knockdown or METTL3-pharmacological inhibition significantly alters the basal and androgen-regulated transcriptome in PCa, which supports targeting m6A as a novel approach to modulate androgen signalling in PCa. |
---|