Cargando…
Frequency of Missed Findings on Chest Radiographs (CXRs) in an International, Multicenter Study: Application of AI to Reduce Missed Findings
Background: Missed findings in chest X-ray interpretation are common and can have serious consequences. Methods: Our study included 2407 chest radiographs (CXRs) acquired at three Indian and five US sites. To identify CXRs reported as normal, we used a proprietary radiology report search engine base...
Autores principales: | Kaviani, Parisa, Kalra, Mannudeep K., Digumarthy, Subba R., Gupta, Reya V., Dasegowda, Giridhar, Jagirdar, Ammar, Gupta, Salil, Putha, Preetham, Mahajan, Vidur, Reddy, Bhargava, Venugopal, Vasanth K., Tadepalli, Manoj, Bizzo, Bernardo C., Dreyer, Keith J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9600490/ https://www.ncbi.nlm.nih.gov/pubmed/36292071 http://dx.doi.org/10.3390/diagnostics12102382 |
Ejemplares similares
-
Performance of a Chest Radiography AI Algorithm for Detection of Missed or Mislabeled Findings: A Multicenter Study
por: Kaviani, Parisa, et al.
Publicado: (2022) -
Radiologist-Trained and -Tested (R2.2.4) Deep Learning Models for Identifying Anatomical Landmarks in Chest CT
por: Kaviani, Parisa, et al.
Publicado: (2022) -
Auto-Detection of Motion Artifacts on CT Pulmonary Angiograms with a Physician-Trained AI Algorithm
por: Dasegowda, Giridhar, et al.
Publicado: (2023) -
Deep learning in chest radiography: Detection of findings and presence of change
por: Singh, Ramandeep, et al.
Publicado: (2018) -
Artificial intelligence matches subjective severity assessment of pneumonia for prediction of patient outcome and need for mechanical ventilation: a cohort study
por: Ebrahimian, Shadi, et al.
Publicado: (2021)