Cargando…
Suppressive Effects of 4-(Phenylsulfanyl) Butan-2-One on CCL-1 Production via Histone Acetylation in Monocytes
The 4-(phenylsulfanyl) butan-2-one (4-PSB-2), a marine-derived compound from soft coral, was proven to have multiple biological activities including neuroprotection and potent anti-inflammatory effects. CC chemokine ligand (CCL)-1 belongs to T helper (Th)2-related chemokines that are involved in the...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9600508/ https://www.ncbi.nlm.nih.gov/pubmed/36286030 http://dx.doi.org/10.3390/cimb44100315 |
Sumario: | The 4-(phenylsulfanyl) butan-2-one (4-PSB-2), a marine-derived compound from soft coral, was proven to have multiple biological activities including neuroprotection and potent anti-inflammatory effects. CC chemokine ligand (CCL)-1 belongs to T helper (Th)2-related chemokines that are involved in the recruitment of Th2 inflammatory cells. Histone acetylation has been recognized as a critical mechanism underlying the regulated cytokine and chemokine production. Our study tried to investigate the anti-inflammatory effect of 4-PSB-2 on CCL-1 production in human monocytes and explore possible underlying intracellular processes, including epigenetic regulation. To confirm our hypothesis, human monocyte THP-1 cell line and primary CD14(+) cells were pretreated with various concentrations of 4-PSB-2 and then were stimulated with lipopolysaccharide (LPS). The CCL-1 concentration was measured by enzyme-linked immunosorbent assays, and the intracellular signaling pathways and epigenetic regulation of 4-PSB-2 were investigated by using Western blotting and chromatin immunoprecipitation analysis. In this study, we found that 4-PSB-2 had a suppressive effect on LPS-induced CCL-1 production. Moreover, this suppressive effect of 4-PSB-2 was mediated via intracellular signaling such as the mitogen-activated protein kinase and nuclear factor-κB pathways. In addition, 4-PSB-2 could suppress CCL-1 production by epigenetic regulation through downregulating histone H3 and H4 acetylation. In short, our study demonstrated that 4-PSB-2 may have a potential role in the treatment of allergic inflammation. |
---|