Cargando…

Native T1 Mapping-Based Radiomics for Noninvasive Prediction of the Therapeutic Effect of Pulmonary Arterial Hypertension

(1) Background: Novel markers for predicting the short-term therapeutic effect of pulmonary arterial hypertension (PAH) to assist in the prompt initiation of tailored treatment strategies are greatly needed and highly desirable. The aim of the study was to investigate the role of cardiac magnetic re...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yue, Lin, Lu, Li, Xiao, Cao, Jian, Wang, Jian, Jing, Zhi-Cheng, Li, Sen, Liu, Hao, Wang, Xin, Jin, Zheng-Yu, Wang, Yi-Ning
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9600513/
https://www.ncbi.nlm.nih.gov/pubmed/36292180
http://dx.doi.org/10.3390/diagnostics12102492
Descripción
Sumario:(1) Background: Novel markers for predicting the short-term therapeutic effect of pulmonary arterial hypertension (PAH) to assist in the prompt initiation of tailored treatment strategies are greatly needed and highly desirable. The aim of the study was to investigate the role of cardiac magnetic resonance (CMR) native T1 mapping radiomics in predicting the short-term therapeutic effect in PAH patients; (2) Methods: Fifty-five PAH patients who received targeted therapy were retrospectively included. Patients were subdivided into an effective group and an ineffective group by assessing the therapeutic effect after ≥3 months of treatment. All patients underwent CMR examinations prior to the beginning of the therapy. Radiomics features from native T1 mapping images were extracted. A radiomics model was constructed using the support vector machine (SVM) algorithm for predicting the therapeutic effect; (3) Results: The SVM radiomics model revealed favorable performance for predicting the therapeutic effect with areas under the receiver operating characteristic curve of 0.955 in the training cohort and 0.893 in the test cohort, respectively. With the optimal cutoff value, the radiomics model showed accuracies of 0.909 and 0.818 in the training and test cohorts, respectively; (4) Conclusions: The CMR native T1 mapping-based radiomics model holds promise for predicting the therapeutic effect in PAH patients.