Cargando…
MDITRE: Scalable and Interpretable Machine Learning for Predicting Host Status from Temporal Microbiome Dynamics
Longitudinal microbiome data sets are being generated with increasing regularity, and there is broad recognition that these studies are critical for unlocking the mechanisms through which the microbiome impacts human health and disease. However, there is a dearth of computational tools for analyzing...
Autores principales: | Maringanti, Venkata Suhas, Bucci, Vanni, Gerber, Georg K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9600536/ https://www.ncbi.nlm.nih.gov/pubmed/36069455 http://dx.doi.org/10.1128/msystems.00132-22 |
Ejemplares similares
-
MDSINE: Microbial Dynamical Systems INference Engine for microbiome time-series analyses
por: Bucci, Vanni, et al.
Publicado: (2016) -
MITRE: inferring features from microbiota time-series data linked to host status
por: Bogart, Elijah, et al.
Publicado: (2019) -
Highly Reproducible 16S Sequencing Facilitates Measurement of Host Genetic Influences on the Stickleback Gut Microbiome
por: Small, Clayton M., et al.
Publicado: (2019) -
Development of simple, scalable protease production from Botrytis cinerea
por: Self, Rachel A., et al.
Publicado: (2022) -
Microbiome Helper: a Custom and Streamlined Workflow for Microbiome Research
por: Comeau, André M., et al.
Publicado: (2017)