Cargando…

A Photoconvertible Reporter System for Bacterial Metabolic Activity Reveals That Staphylococcus aureus Enters a Dormant-Like State to Persist within Macrophages

Staphylococcus aureus is a leading cause of difficult-to-treat infections. The capacity of S. aureus to survive and persist within phagocytic cells is an important factor contributing to therapy failures and infection recurrence. Therefore, interfering with S. aureus intracellular persistence is key...

Descripción completa

Detalles Bibliográficos
Autores principales: Lang, Julia C., Seiß, Elena A., Moldovan, Adriana, Müsken, Mathias, Sauerwein, Till, Fraunholz, Martin, Müller, Andreas J., Goldmann, Oliver, Medina, Eva
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9600638/
https://www.ncbi.nlm.nih.gov/pubmed/36102512
http://dx.doi.org/10.1128/mbio.02316-22
_version_ 1784816892813246464
author Lang, Julia C.
Seiß, Elena A.
Moldovan, Adriana
Müsken, Mathias
Sauerwein, Till
Fraunholz, Martin
Müller, Andreas J.
Goldmann, Oliver
Medina, Eva
author_facet Lang, Julia C.
Seiß, Elena A.
Moldovan, Adriana
Müsken, Mathias
Sauerwein, Till
Fraunholz, Martin
Müller, Andreas J.
Goldmann, Oliver
Medina, Eva
author_sort Lang, Julia C.
collection PubMed
description Staphylococcus aureus is a leading cause of difficult-to-treat infections. The capacity of S. aureus to survive and persist within phagocytic cells is an important factor contributing to therapy failures and infection recurrence. Therefore, interfering with S. aureus intracellular persistence is key to treatment success. In this study, we used a S. aureus strain carrying the reporter mKikumeGR that enables the monitoring of the metabolic status of intracellular bacteria to achieve a better understanding of the molecular mechanisms facilitating S. aureus survival and persistence within macrophages. We found that shortly after bacteria internalization, a large fraction of macrophages harbored mainly S. aureus with high metabolic activity. This population decreased gradually over time with the concomitant increase of a macrophage subpopulation harboring S. aureus with low metabolic activity, which prevailed at later times. A dual RNA-seq analysis performed in each macrophage subpopulation showed that the host transcriptional response was similar between both subpopulations. However, intracellular S. aureus exhibited disparate gene expression profiles depending on its metabolic state. Whereas S. aureus with high metabolic activity exhibited a greater expression of genes involved in protein synthesis and proliferation, bacteria with low metabolic activity displayed a higher expression of oxidative stress response-related genes, silenced genes involved in energy-consuming processes, and exhibited a dormant-like state. Consequently, we propose that reducing metabolic activity and entering into a dormant-like state constitute a survival strategy used by S. aureus to overcome the adverse environment encountered within macrophages and to persist in the intracellular niche.
format Online
Article
Text
id pubmed-9600638
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-96006382022-10-27 A Photoconvertible Reporter System for Bacterial Metabolic Activity Reveals That Staphylococcus aureus Enters a Dormant-Like State to Persist within Macrophages Lang, Julia C. Seiß, Elena A. Moldovan, Adriana Müsken, Mathias Sauerwein, Till Fraunholz, Martin Müller, Andreas J. Goldmann, Oliver Medina, Eva mBio Research Article Staphylococcus aureus is a leading cause of difficult-to-treat infections. The capacity of S. aureus to survive and persist within phagocytic cells is an important factor contributing to therapy failures and infection recurrence. Therefore, interfering with S. aureus intracellular persistence is key to treatment success. In this study, we used a S. aureus strain carrying the reporter mKikumeGR that enables the monitoring of the metabolic status of intracellular bacteria to achieve a better understanding of the molecular mechanisms facilitating S. aureus survival and persistence within macrophages. We found that shortly after bacteria internalization, a large fraction of macrophages harbored mainly S. aureus with high metabolic activity. This population decreased gradually over time with the concomitant increase of a macrophage subpopulation harboring S. aureus with low metabolic activity, which prevailed at later times. A dual RNA-seq analysis performed in each macrophage subpopulation showed that the host transcriptional response was similar between both subpopulations. However, intracellular S. aureus exhibited disparate gene expression profiles depending on its metabolic state. Whereas S. aureus with high metabolic activity exhibited a greater expression of genes involved in protein synthesis and proliferation, bacteria with low metabolic activity displayed a higher expression of oxidative stress response-related genes, silenced genes involved in energy-consuming processes, and exhibited a dormant-like state. Consequently, we propose that reducing metabolic activity and entering into a dormant-like state constitute a survival strategy used by S. aureus to overcome the adverse environment encountered within macrophages and to persist in the intracellular niche. American Society for Microbiology 2022-09-14 /pmc/articles/PMC9600638/ /pubmed/36102512 http://dx.doi.org/10.1128/mbio.02316-22 Text en Copyright © 2022 Lang et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Lang, Julia C.
Seiß, Elena A.
Moldovan, Adriana
Müsken, Mathias
Sauerwein, Till
Fraunholz, Martin
Müller, Andreas J.
Goldmann, Oliver
Medina, Eva
A Photoconvertible Reporter System for Bacterial Metabolic Activity Reveals That Staphylococcus aureus Enters a Dormant-Like State to Persist within Macrophages
title A Photoconvertible Reporter System for Bacterial Metabolic Activity Reveals That Staphylococcus aureus Enters a Dormant-Like State to Persist within Macrophages
title_full A Photoconvertible Reporter System for Bacterial Metabolic Activity Reveals That Staphylococcus aureus Enters a Dormant-Like State to Persist within Macrophages
title_fullStr A Photoconvertible Reporter System for Bacterial Metabolic Activity Reveals That Staphylococcus aureus Enters a Dormant-Like State to Persist within Macrophages
title_full_unstemmed A Photoconvertible Reporter System for Bacterial Metabolic Activity Reveals That Staphylococcus aureus Enters a Dormant-Like State to Persist within Macrophages
title_short A Photoconvertible Reporter System for Bacterial Metabolic Activity Reveals That Staphylococcus aureus Enters a Dormant-Like State to Persist within Macrophages
title_sort photoconvertible reporter system for bacterial metabolic activity reveals that staphylococcus aureus enters a dormant-like state to persist within macrophages
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9600638/
https://www.ncbi.nlm.nih.gov/pubmed/36102512
http://dx.doi.org/10.1128/mbio.02316-22
work_keys_str_mv AT langjuliac aphotoconvertiblereportersystemforbacterialmetabolicactivityrevealsthatstaphylococcusaureusentersadormantlikestatetopersistwithinmacrophages
AT seißelenaa aphotoconvertiblereportersystemforbacterialmetabolicactivityrevealsthatstaphylococcusaureusentersadormantlikestatetopersistwithinmacrophages
AT moldovanadriana aphotoconvertiblereportersystemforbacterialmetabolicactivityrevealsthatstaphylococcusaureusentersadormantlikestatetopersistwithinmacrophages
AT muskenmathias aphotoconvertiblereportersystemforbacterialmetabolicactivityrevealsthatstaphylococcusaureusentersadormantlikestatetopersistwithinmacrophages
AT sauerweintill aphotoconvertiblereportersystemforbacterialmetabolicactivityrevealsthatstaphylococcusaureusentersadormantlikestatetopersistwithinmacrophages
AT fraunholzmartin aphotoconvertiblereportersystemforbacterialmetabolicactivityrevealsthatstaphylococcusaureusentersadormantlikestatetopersistwithinmacrophages
AT mullerandreasj aphotoconvertiblereportersystemforbacterialmetabolicactivityrevealsthatstaphylococcusaureusentersadormantlikestatetopersistwithinmacrophages
AT goldmannoliver aphotoconvertiblereportersystemforbacterialmetabolicactivityrevealsthatstaphylococcusaureusentersadormantlikestatetopersistwithinmacrophages
AT medinaeva aphotoconvertiblereportersystemforbacterialmetabolicactivityrevealsthatstaphylococcusaureusentersadormantlikestatetopersistwithinmacrophages
AT langjuliac photoconvertiblereportersystemforbacterialmetabolicactivityrevealsthatstaphylococcusaureusentersadormantlikestatetopersistwithinmacrophages
AT seißelenaa photoconvertiblereportersystemforbacterialmetabolicactivityrevealsthatstaphylococcusaureusentersadormantlikestatetopersistwithinmacrophages
AT moldovanadriana photoconvertiblereportersystemforbacterialmetabolicactivityrevealsthatstaphylococcusaureusentersadormantlikestatetopersistwithinmacrophages
AT muskenmathias photoconvertiblereportersystemforbacterialmetabolicactivityrevealsthatstaphylococcusaureusentersadormantlikestatetopersistwithinmacrophages
AT sauerweintill photoconvertiblereportersystemforbacterialmetabolicactivityrevealsthatstaphylococcusaureusentersadormantlikestatetopersistwithinmacrophages
AT fraunholzmartin photoconvertiblereportersystemforbacterialmetabolicactivityrevealsthatstaphylococcusaureusentersadormantlikestatetopersistwithinmacrophages
AT mullerandreasj photoconvertiblereportersystemforbacterialmetabolicactivityrevealsthatstaphylococcusaureusentersadormantlikestatetopersistwithinmacrophages
AT goldmannoliver photoconvertiblereportersystemforbacterialmetabolicactivityrevealsthatstaphylococcusaureusentersadormantlikestatetopersistwithinmacrophages
AT medinaeva photoconvertiblereportersystemforbacterialmetabolicactivityrevealsthatstaphylococcusaureusentersadormantlikestatetopersistwithinmacrophages